Hepatic stellate cells are embedded in the loose connective tissue matrix within the space of Disse. This extracellular matrix contains several basement membrane components including laminin, but its composition changes during liver injury because of the production of extracellular matrix components found in scar tissue. These changes in extracellular matrix composition and in cell-extracellular matrix interactions may play a key role in hepatic stellate cell transdifferentiation. In this communication we used early passages of mouse hepatic stellate cells (activated HSC/myofibroblasts) to study the platelet-derived growth factor BB (PDGF-BB)-dependent expression and regulation of β-dystroglycan and its role in activated HSC/myofibroblast migration. We used Northern and Western analysis to study dystroglycan expression and confocal microscopy to investigate changes in subcellular distribution of the protein. Activated HSC migration was investigated using an in vitro wound-healing assay. PDGF-BB induced significant changes in dystroglycan regulation and subcellular distribution of the protein. Whereas steady-state levels of dystroglycan mRNA remained constant, PDGF-BB increased dystroglycan transcription but shortened the t(1/2) by 50%. Moreover, PDGF-BB changed dystroglycan and α5-integrin cellular distribution. Cell migration experiments revealed that PDGF-BB-dependent migration of activated HSC/myofibroblasts was completely blocked by neutralizing antibodies to fibronectin, α5-integrin, laminin, and β-dystroglycan. Overall, these findings suggest that both laminin and fibronectin and their receptors play a key role in PDGF-BB-induced activated HSC migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174534PMC
http://dx.doi.org/10.1152/ajpgi.00078.2011DOI Listing

Publication Analysis

Top Keywords

hepatic stellate
16
extracellular matrix
12
pdgf-bb-dependent migration
8
migration activated
8
stellate cells
8
play key
8
key role
8
activated hsc/myofibroblasts
8
subcellular distribution
8
distribution protein
8

Similar Publications

One of the outstanding features of chronic hepatitis B infection (CHB) is its strong association with liver fibrosis. CHB induced inflammation and injury trigger multiple biochemical and physical changes that include the promotion of a wide range of cytokines, chemokines and growth factors that activate hepatic stellate cells (HSCs) CHB induced activation of hepatic stellate cells (HSCs) is regarded as a central event in fibrogenesis to directly promote the synthesis of myofibroblasts and the expression of a range of materials to repair injured liver tissue. Fibrogenesis is modulated by the mainstream epigenetic machinery, as well as by non-coding RNA (ncRNA) that are often referred to as an ancillary epigenetic response to fine tune gene expression.

View Article and Find Full Text PDF

Spinal cord injury (SCI) causes abnormal liver function, the development of metabolic dysfunction-associated steatotic liver disease features and metabolic impairment in patients. Experimental models also demonstrate acute and chronic changes in the liver that may, in turn, affect SCI recovery. These changes have collectively been proposed to contribute to the development of a SCI-induced metabolic dysfunction-associated steatohepatitis (MASH).

View Article and Find Full Text PDF

Cystic degeneration (CD) in the liver is a cyst-like lesion composed of one or more pseudocysts lacking lining cells, occurring spontaneously in rats older than 12 months, with a male predilection. In this study, 32 CDs were identified in 23 out of 104 non-treated, control male Sprague-Dawley rats from two combined chronic toxicity and carcinogenicity studies with agrochemicals. They were examined histologically, histochemically, and immunohistochemically to assess the pathogenesis and pathological significance of CD, focusing on pseudocapillarization in aged rat liver.

View Article and Find Full Text PDF

Ghrelin reduced the profibrotic effect of IHC-Exo in liver fibrosis by regulating lncMALAT1/GPX4 pathway mediated HSCs ferroptosis. Triggering HSCs ferroptosis via GHR-IHC-Exo may become a novel strategy to alleviate the progression of liver fibrosis. Liver fibrosis is the end stage of the continuous progression of a variety of chronic liver diseases.

View Article and Find Full Text PDF

Aims: Aurora kinase A (AURKA) has been implicated in promoting myeloid and renal fibrosis. This study aimed to investigate the impact and underlying mechanism of AURKA on liver fibrosis and to assess the therapeutic potential of MLN8237, a small-molecule AURKA inhibitor, in preventing liver fibrosis in mice.

Methods: The research used bioinformatics analysis and immunohistochemistry staining on fibrotic liver tissues from human and mouse models to assess AURKA expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!