Background: Delayed myocardial preconditioning by volatile anesthetics involves changes in DNA transcription and translation. Mitochondria play a central role in myocardial ischemia/reperfusion (I/R) injury and in ischemic or pharmacologic preconditioning. In this study, we investigated whether there are alterations in myocardial mitochondrial protein expression after volatile anesthetic preconditioning (APC) to examine the underlying mechanisms of delayed cardioprotection.
Methods: Thirty-six Sprague-Dawley rats were randomly assigned to 1 of 3 groups (n = 12 for each group). Rats in the delayed APC group were exposed to sevoflurane (2.5% for 60 minutes) 24 hours before myocardial ischemia was induced. Myocardial ischemia in the I/R and APC groups was induced by left coronary artery occlusion for 30 minutes, followed by 120 minutes of reperfusion. The control group received no treatment. The mitochondria fractions were prepared by differential centrifugation with density gradient isolation for proteomic analysis. Two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry was used to identify differences in the protein expression from mitochondria of the rat hearts.
Results: Fifteen differentially expressed mitochondrial proteins between the APC group and I/R group were identified and the expression patterns of 2 of the proteins were confirmed by Western blot analysis. These proteins were associated with mitochondrial substrate metabolism, respiration, and adenosine triphosphate (ATP)/adenosine diphosphate transport. The modifications of the mitochondrial proteome suggest an enhanced capacity of mitochondria to maintain myocardial ATP levels after I/R injury.
Conclusion: Delayed sevoflurane myocardial preconditioning induces mitochondrial proteome remodeling, which mainly involves proteins that are related to ATP generation and transport. Therefore, proteomic changes related to bioenergetic balance may be the mechanistic basis of delayed anesthetic myocardial preconditioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/ANE.0b013e3182239b71 | DOI Listing |
Nat Commun
December 2024
Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.
View Article and Find Full Text PDFJ Adv Res
December 2024
Women's hospital, Ministry education key laboratory, School of Medicine, Zhejiang University, 310006 China. Electronic address:
Introduction: Mammalian sperm within a single ejaculate exhibit significant heterogeneity, with only a subset possessing the molecular characteristics required for successful fertilization. Identifying the defining traits of these high-fertility sperm remains an open question.
Objectives: To elucidate the molecular markers and mechanisms underlying the fertilization potential of sperm in both mice and humans, with a focus on the role of D-mannose.
Sci Rep
December 2024
Department of Cardiac Surgery, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
Heart transplantation remains the ultimate treatment strategy for neonates and children with medically refractory end-stage heart failure and utilization of donors after circulatory death (DCD) can expand th donor pool. We have previously shown that mitochondrial transplantation preserves myocardial function and viability in neonatal swine DCD hearts to levels similar to that observed in donation after brain death (DBD). Herein, we sought to investigate the transcriptomic and proteomic pathways implicated in these phenotypic changes using ex situ perfused swine hearts.
View Article and Find Full Text PDFCell Signal
December 2024
Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Institue of Cardiovascular Diseases, Jiangsu University, Zhenjiang 212001, China. Electronic address:
Atherosclerotic cardiovascular and cerebrovascular diseases are the number one killer of human health. In view of the important role of mitochondria in the formation and evolution of atherosclerosis, our manuscript aims to comprehensively elaborate the relationship between mitochondria and the formation and evolution of atherosclerosis from the aspects of mitochondrial dynamics, mitochondria-organelle interaction (communication), mitochondria and cell death, mitochondria and vascular smooth muscle cell phenotypic switch, etc., which is combined with genome, transcriptome and proteome, in order to provide new ideas for the pathogenesis of atherosclerosis and the diagnosis and treatment of related diseases.
View Article and Find Full Text PDFJ Proteomics
December 2024
School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:
Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!