To investigate the organization of and mode of selection in the α-tubulin genes, full-length α-tubulin genes were cloned from four intraspecific taxa of Miscanthus sinensis and its close relatives M. floridulus and M. condensatus using standard polymerase chain reaction (PCR) and rapid amplification of genomic ends (RAGE)-PCR strategies. Genealogical analysis of angiosperms recovered a monophyletic group of Miscanthus α-tubulin genes, which is homologous to the tua5 locus of maize. Two clusters of nearly equal frequency revealed paraphyly within each Miscanthus taxon. Between-cluster recombination was frequent. Additional evidence for co-occurrence of two haplotypes within individuals and a large-scale crossover all suggested a likely allelic relationship between the Miscanthus clusters. Given a long between-species divergence time in Miscanthus, wide occurrence of the trans-species polymorphisms in α-tubulin genes and the approximately equal frequency of each allelic type make it extremely unlikely that α-tubulin diversity has been maintained under neutrality. Balancing selection may have contributed to such an apportioning of genetic variability as well as to high levels of genetic variation in α-tubulin and higher substitution rates at synonymous sites of exons than at intron bases of M. sinensis. In addition, certain effects of demographic oscillation may have distorted the scenario of a functional locus operating under balancing selection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.90.10.1513 | DOI Listing |
iScience
January 2025
Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
Mutations in the human genes encoding the endothelin ligand-receptor pair and cause Waardenburg-Shah syndrome (WS4), which includes congenital hearing impairment. The current explanation for auditory dysfunction is defective migration of neural crest-derived melanocytes to the inner ear. We explored the role of endothelin signaling in auditory development in mice using neural crest-specific and placode-specific mutation plus related genetic resources.
View Article and Find Full Text PDFiScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFiScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFOver the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.
Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.
Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!