In previous work (P. Schulz et al., Cancer Res., 48: 2867-2870, 1988) we have demonstrated that diethylstilbestrol (DES), DES-monophosphate, and DES-diphosphate (DESDP) are generally cytotoxic at concentrations attained in patients' sera during therapeutic DESDP infusions for progressed carcinoma of the prostate. We have extended this work and addressed two questions: (a) Is DESDP itself a completely nontoxic prodrug which has to be transformed into the active species DES by a phosphatase? (b) Which metabolic or regulatory mechanism in a cell is the target of DES action? Using cell cultures in phosphatase-depleted media we could provide evidence that DESDP exerts cytotoxic activity only after conversion to DES. Oxygen electrode experiments and difference spectra with intact mitochondria demonstrated that DES did not act as an uncoupler, but inhibited electron flow from ubiquinone to cytochrome c1. Phenomena previously observed in DES-treated cells could be explained by distortion of the energy metabolism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

des
5
role mitochondrial
4
mitochondrial bc1-complex
4
bc1-complex cytotoxic
4
cytotoxic action
4
action diethylstilbestrol-diphosphate
4
diethylstilbestrol-diphosphate prostatic
4
prostatic carcinoma
4
carcinoma cells
4
cells previous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!