Background: Engineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure.

Results: Avidin is a widely used protein in biomedicine and biotechnology. To tailor the binding properties of avidin, we have designed a sequence-randomized avidin library with mutagenesis focused at the loop area of the binding site. Selection from the generated library led to the isolation of a steroid-binding avidin mutant (sbAvd-1) showing micromolar affinity towards testosterone (Kd ~ 9 μM). Furthermore, a gene library based on the sbAvd-1 gene was created by randomizing the loop area between β-strands 3 and 4. Phage display selection from this library led to the isolation of a steroid-binding protein with significantly decreased biotin binding affinity compared to sbAvd-1. Importantly, differential scanning calorimetry and analytical gel-filtration revealed that the high stability and the tetrameric structure were preserved in these engineered avidins.

Conclusions: The high stability and structural properties of avidin make it an attractive molecule for the engineering of novel receptors. This methodology may allow the use of avidin as a universal scaffold in the development of novel receptors for small molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201017PMC
http://dx.doi.org/10.1186/1472-6750-11-64DOI Listing

Publication Analysis

Top Keywords

steroid-binding protein
8
properties avidin
8
loop area
8
library led
8
led isolation
8
isolation steroid-binding
8
high stability
8
novel receptors
8
avidin
7
modification loops
4

Similar Publications

Elevated blood levels of estrogens are associated with poor prognosis in estrogen receptor-positive (ER+) breast cancers, but the relationship between circulating blood hormone levels and intracellular hormone concentrations are not well characterized. We observed that MCF-7 cells treated acutely with 17β-estradiol (E2) retain a substantial amount of the hormone even upon removal of the hormone from the culture medium. Moreover, global patterns of E2-dependent gene expression are sustained for hours after acute E2 treatment and hormone removal.

View Article and Find Full Text PDF

An evaluation of the precision of computational methods used in drug development initiatives.

J Biomol Struct Dyn

December 2024

Department of Chemistry, Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania, USA.

Computational approaches are commonly employed to expedite and provide decision-making for the drug development process. Drug development programs that involve targets without known crystal structures can be quite challenging. In many cases, a viable approach is to generate reliable homology models using the amino acid sequence of the target.

View Article and Find Full Text PDF

Parabens are widely used as preservatives in personal care products and are linked to potential disruptions in placental steroidogenesis. However, their exact impact remains unclear. This study aimed to explore the inhibition, mechanisms, structure-activity relationships (SAR) of parabens on human placental 3β-hydroxysteroid dehydrogenase type 1 (h3β-HSD1) and its rat counterpart, r3β-HSD4.

View Article and Find Full Text PDF

Guided by the idea that the presence of a heterocyclic aromatic core and tyramine moiety, under the umbrella of a single molecular scaffold could bring interesting biological properties, herein we present synthesis, characterization, with two crystal structures reported, and biological evaluation of some tyramine derivates. Cytotoxic and antimigratory potential was addressed by using a colorectal cancer cell line as a model system. Although possessing no cytotoxic effects, two compounds have shown strong antimigratory potential in low doses, with no effect on healthy MRC-5 cells.

View Article and Find Full Text PDF

Structural and functional analysis of a bile salt hydrolase from the bison microbiome.

J Biol Chem

October 2024

Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. Electronic address:

The bile salt hydrolases (BSHs) are significant constituents of animal microbiomes. An evolving appreciation of their roles in health and disease has established them as targets of pharmacological inhibition. These bacterial enzymes belong to the N-terminal nucleophile superfamily and are best known to catalyze the deconjugation of glycine or taurine from bile salts to release bile acid substrates for transformation and or metabolism in the gastrointestinal tract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!