Genetic profile of SNP(s) and ovulation induction.

Curr Pharm Biotechnol

Division of Human Reproduction, IVF Unit, 1st Department of Obstetrics and Gynecology, Alexandra Hospital, Athens University Medical School, Athens, Greece.

Published: March 2012

Obtaining an adequate number of good quality oocytes while minimizing adverse drug reactions (ADRs) and cycle cancellation rates is considered the gold standard in controlled ovarian hyperstimulation (COH) for fertility treatment. Patients who undergo IVF/ICSI cycles tend to present with different responses to exogenous gonadotrophin administration. Research has shown that the secret probably lies in the various single nucleotide polymorhisms (SNPs) in their receptor genes. The decryption of human genome provided specialists with additional information in assessing and even predicting ovarian response to COH. In this context, the study of Pharmacogenomics, Pharmacogenetics and SNPs unravels as a promising field in optimizing fertility treatment. Several SNPs in FSH and estrogen receptor genes have been detected so far, but only three of them, one in FSH receptor and two in estrogen receptor genes have been associated with ovarian response to COH. It seems that the Asn/Ser variant of the FSH receptor functions more efficiently, while the Ser/Ser and Asn/Asn variants have a tendency to resist to FSH stimulation. With regards to estrogen receptor 1 (ESR1), the Pvull and the Xbal polymorphisms seem to be associated with differences in the response to ovarian stimulation, while the Rsal polymorphism in estrogen receptor 2 (ESR2) is currently under investigation. There exists evidence supporting the hypothesis that a set of genes, all related to the FSH hormone mechanism of action, may participate along with other factors to the control of ovarian response to FSH, thus a cautious interpretation of polymorphism detection results is considered mandatory. However, identifying potential genetic markers that could predict ovarian response and implementing them in routine screening tests for every woman entering an IVF/ICSI cycle, would be able to tailor fertility treatment to each patients needs thus maximizing the success rate and eliminating potential side-effects of fertility drugs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/138920112799361954DOI Listing

Publication Analysis

Top Keywords

ovarian response
16
estrogen receptor
16
fertility treatment
12
receptor genes
12
treatment patients
8
response coh
8
fsh receptor
8
receptor
7
ovarian
6
fsh
6

Similar Publications

Background: Ovarian cancer (OC) represents a common neoplasm within the female reproductive tract. The prognosis for patients diagnosed at advanced stages is unfavorable, primarily attributable to the absence of reliable screening markers for early detection. An elevated neutrophil-to-lymphocyte ratio (NLR) serves as an indicator of host inflammatory response and has been linked to poorer overall survival (OS) across various cancer types; however, its examination in OC remains limited.

View Article and Find Full Text PDF

Infertility has emerged as a significant global health concern. Assisted reproductive technology (ART) assists numerous infertile couples in conceiving, yet some experience repeated, unsuccessful cycles. This study aims to identify the pivotal clinical factors influencing the success of fresh embryo transfer of in vitro fertilization (IVF).

View Article and Find Full Text PDF

Background: Olaparib is a relatively new poly(ADP-ribose) polymerase inhibitor (PARPi) administered to ovarian cancer (OC) patients with a complete or partial response to first-line chemotherapy. One of the metabolic side effects of olaparib is the disruption of glucose homeostasis, often resulting in hyperglycemia The study was a retrospective analysis of olaparib-induced hyperglycemia in OC patients with initial normoglycemia following the first, second, and third month of olaparib treatment METHODS: The study involved 32 OC patients, classified into three groups according to their Body Mass Index (BMI): normal BMI (BMI 18.5-24.

View Article and Find Full Text PDF

The distinctive characteristics of an individual's T cell receptor repertoire are crucial in recognizing and responding to a diverse array of antigens, contributing to immune specificity and adaptability. The repertoire, famously vast due to a series of cellular mechanisms, can be quantified using repertoire sequencing. In this study, we sampled the repertoire of 85 women: ovarian cancer patients (OC) and healthy donors (HD), generating a dataset of T cell clones and their abundance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!