Binaural unmasking of multi-channel stimuli in bilateral cochlear implant users.

J Assoc Res Otolaryngol

ExpORL/Department of Neurosciences, K.U.Leuven, Belgium.

Published: October 2011

Previous work suggests that bilateral cochlear implant users are sensitive to interaural cues if experimental speech processors are used to preserve accurate interaural information in the electrical stimulation pattern. Binaural unmasking occurs in adults and children when an interaural delay is applied to the envelope of a high-rate pulse train. Nevertheless, for speech perception, binaural unmasking benefits have not been demonstrated consistently, even with coordinated stimulation at both ears. The present study aimed at bridging the gap between basic psychophysical performance on binaural signal detection tasks on the one hand and binaural perception of speech in noise on the other hand. Therefore, binaural signal detection was expanded to multi-channel stimulation and biologically relevant interaural delays. A harmonic complex, consisting of three sinusoids (125, 250, and 375 Hz), was added to three 125-Hz-wide noise bands centered on the sinusoids. When an interaural delay of 700 μs was introduced, an average BMLD of 3 dB was established. Outcomes are promising in view of real-life benefits. Future research should investigate the generalization of the observed benefits for signal detection to speech perception in everyday listening situations and determine the importance of coordination of bilateral speech processors and accentuation of envelope cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173550PMC
http://dx.doi.org/10.1007/s10162-011-0275-2DOI Listing

Publication Analysis

Top Keywords

binaural unmasking
12
signal detection
12
bilateral cochlear
8
cochlear implant
8
implant users
8
speech processors
8
interaural delay
8
speech perception
8
binaural signal
8
hand binaural
8

Similar Publications

Neural tracking of the speech envelope predicts binaural unmasking.

Eur J Neurosci

January 2025

Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium.

Binaural unmasking is a remarkable phenomenon that it is substantially easier to detect a signal in noise when the interaural parameters of the signal are different from those of the noise - a useful mechanism in so-called cocktail party scenarios. In this study, we investigated the effect of binaural unmasking on neural tracking of the speech envelope. We measured EEG in 8 participants who listened to speech in noise at a fixed signal-to-noise ratio, in two conditions: one where speech and noise had the same interaural phase difference (both speech and noise having an opposite waveform across ears, SπNπ), and one where the interaural phase difference of the speech was different from that of the noise (only the speech having an opposite waveform across ears, SπN).

View Article and Find Full Text PDF

Bilateral cochlear implant (BiCI) usage makes binaural benefits a possibility for implant users. Yet for BiCI users, limited access to interaural time difference (ITD) cues and reduced saliency of interaural level difference (ILD) cues restricts perceptual benefits of spatially separating a target from masker sounds. The present study explored whether magnifying ILD cues improves intelligibility of masked speech for BiCI listeners in a "symmetrical-masker" configuration, which ensures that neither ear benefits from a long-term positive target-to-masker ratio (TMR) due to naturally occurring ILD cues.

View Article and Find Full Text PDF

Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear.

View Article and Find Full Text PDF

The auditory system has exquisite temporal coding in the periphery which is transformed into a rate-based code in central auditory structures, like auditory cortex. However, the cortex is still able to synchronize, albeit at lower modulation rates, to acoustic fluctuations. The perceptual significance of this cortical synchronization is unknown.

View Article and Find Full Text PDF

Web-based testing is an appealing option for expanding psychoacoustics research outside laboratory environments due to its simple logistics. For example, research participants partake in listening tasks using their own computer and audio hardware and can participate in a comfortable environment of their choice at their own pace. However, it is unknown how deviations from conventional in-lab testing affect data quality, particularly in binaural hearing tasks that traditionally require highly precise audio presentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!