The high level of low density lipoprotein (LDL) in plasma is the main cause of atherosclerosis. Hemoperfusion is an ideal therapy to lower the level of LDL in human blood system while therapeutic effect is determined by the adsorbent. The adsorbent must have suitable pore structure and specific functional groups. Carbon nanotubes (CNTs) could be a new adsorbent material because CNTs have high specific surface area and they can be modified by a variety of functional groups. Porous carbon composite beads with the CNTs and phenolic resin mixture were synthesized by suspension polymerization, following with carbonization and steam-activation. Then the porous composite beads were sulfonated with a sulfanilic acid anhydrous by diazotization and coupling reaction. The potential application of the sulfonated porous composite beads in adsorbing low density lipoprotein (LDL) from human serum was investigated. The results showed that the sulfonic acid groups on the composite beads could lower LDL levels greatly by electrostatic interaction with electropositive LDL. The higher 20-100 nm pore volume the composite beads had, the more LDL they could adsorb. The 20-100 nm pore volume was enhanced by adding more CNTs and improving CNTs dispersion (ultrasonic crushing). The sulfonated composite beads containing 45 wt% CNTs presented the highest adsorption capacity to LDL 10.46 mg/g, showing a good prospect as LDL adsorbent in hemoperfusion.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-011-4368-6DOI Listing

Publication Analysis

Top Keywords

composite beads
28
low density
12
density lipoprotein
12
sulfonated porous
8
porous carbon
8
carbon composite
8
ldl
8
lipoprotein ldl
8
ldl human
8
functional groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!