Purpose: To investigate possible effects of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid (UDCA) and its metabolites in healthy volunteers.
Methods: In a crossover study with two phases, 15 healthy volunteers with the SLCO1B1*1A/*1A genotype, seven with the *1B/*1B genotype, and five with the *15/*15 or *5/*15 genotype ingested placebo or a single 150-mg dose of UDCA. Plasma concentrations of bile acids and their biosynthesis marker were determined up to 24 h post-ingestion by liquid chromatography-tandem mass spectrometry.
Results: The SLCO1B1 genotype had no significant effect on the pharmacokinetics of UDCA. The geometric mean ratios (95% confidence interval) of UDCA area under the plasma concentration-time curve from 0 to 12 h (AUC(0-12)) in subjects with the SLCO1B1*1B/*1B genotype and in subjects with the SLCO1B1*15/*15 or *5/*15 genotype to the AUC(0-12) in subjects with the SLCO1B1*1A/*1A genotype were 1.07 (0.85, 1.35; P = 0.459) and 0.93 (0.75, 1.15; P = 0.563), respectively. In addition, following either placebo or UDCA administration, the SLCO1B1 polymorphism showed no association with the AUC(0-24) of the glycine and taurine conjugates of UDCA, with endogenous bile acids, or with the incremental AUC(0-24) of a bile acid synthesis marker. Compared with placebo, UDCA ingestion increased the AUC(0-24) of cholic acid, glycochenodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid by 1.5-, 1.1-, 1.2-, and 1.2- fold (P < 0.05), respectively.
Conclusions: Genetic polymorphism in SLCO1B1 does not affect pharmacokinetics of UDCA, suggesting that OATP1B1 is not rate-limiting to the hepatic uptake of therapeutic UDCA. Further studies are required to clarify the mechanisms by which UDCA increases the plasma concentrations of endogenous bile acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00228-011-1070-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!