When a massive star explodes as a supernova, substantial amounts of radioactive elements--primarily (56)Ni, (57)Ni and (44)Ti--are produced. After the initial flash of light from shock heating, the fading light emitted by the supernova is due to the decay of these elements. However, after decades, the energy powering a supernova remnant comes from the shock interaction between the ejecta and the surrounding medium. The transition to this phase has hitherto not been observed: supernovae occur too infrequently in the Milky Way to provide a young example, and extragalactic supernovae are generally too faint and too small. Here we report observations that show this transition in the supernova SN 1987A in the Large Magellanic Cloud. From 1994 to 2001, the ejecta faded owing to radioactive decay of (44)Ti as predicted. Then the flux started to increase, more than doubling by the end of 2009. We show that this increase is the result of heat deposited by X-rays produced as the ejecta interacts with the surrounding material. In time, the X-rays will penetrate farther into the ejecta, enabling us to analyse the structure and chemistry of the vanished star.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature10090 | DOI Listing |
Phys Rev Lett
December 2024
Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy.
We revisit supernova (SN) bounds on a hidden sector consisting of millicharged particles χ and a massless dark photon. Unless the self-coupling is fine-tuned to be small, rather than exiting the SN core as a gas, the particles form a relativistic fluid and subsequent dark QED fireball, streaming out against the drag due to the interaction with matter. Novel bounds due to excessive energy deposition in the mantle of low-energy supernovae can be obtained.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
LAPTh, Université Savoie Mont-Blanc et CNRS, 74941 Annecy, France.
The duration of the neutrino burst from the supernova event SN 1987A is known to be sensitive to exotic sources of cooling, such as axions radiated from the dense and hot hadronic matter thought to constitute the inner core of the supernova. We perform the first quantitative study of the role of hadronic matter beyond the first generation--in particular strange matter. We do so by consistently including the full baryon and meson octets, and computing axion emissivity induced from baryon-meson to baryon-axion scatterings as well as from baryon decays.
View Article and Find Full Text PDFPhys Rev Lett
March 2024
University of Michigan, Ann Arbor, Michigan 48109, USA.
An explanation for the origin and number of clumps along the equatorial ring of Supernova 1987A has eluded decades of research. Our linear analysis and hydrodynamic simulations of the expanding ring prior to the supernova reveal that it is subject to the Crow instability between vortex cores. The dominant wave number is remarkably consistent with the number of clumps, suggesting that the Crow instability stimulates clump formation.
View Article and Find Full Text PDFScience
February 2024
Institute of Astronomy, Katholieke Universiteit Leuven, 3001 Leuven, Belgium.
The nearby Supernova 1987A was accompanied by a burst of neutrino emission, which indicates that a compact object (a neutron star or black hole) was formed in the explosion. There has been no direct observation of this compact object. In this work, we observe the supernova remnant with JWST spectroscopy, finding narrow infrared emission lines of argon and sulfur.
View Article and Find Full Text PDFPhys Rev Lett
August 2023
Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA.
Neutrinos remain mysterious. As an example, enhanced self-interactions (νSI), which would have broad implications, are allowed. At the high neutrino densities within core-collapse supernovae, νSI should be important, but robust observables have been lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!