A role for PrP in the toxic effect of oligomeric forms of Aβ, implicated in Alzheimer's disease (AD), has been suggested but remains controversial. Here we show that PrP is required for the plasticity-impairing effects of ex vivo material from human AD brain and that standardized Aβ-derived diffusible ligand (ADDL) preparations disrupt hippocampal synaptic plasticity in a PrP-dependent manner. We screened a panel of anti-PrP antibodies for their ability to disrupt the ADDL-PrP interaction. Antibodies directed to the principal PrP/Aβ-binding site and to PrP helix-1, were able to block Aβ binding to PrP suggesting that the toxic Aβ species are of relatively high molecular mass and/or may bind multiple PrP molecules. Two representative and extensively characterized monoclonal antibodies directed to these regions, ICSM-35 and ICSM-18, were shown to block the Aβ-mediated disruption of synaptic plasticity validating these antibodies as candidate therapeutics for AD either individually or in combination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156817 | PMC |
http://dx.doi.org/10.1038/ncomms1341 | DOI Listing |
Food Sci Nutr
January 2025
Department of Pathology and Pathophysiology, School of Medicine Nanjing University of Chinese Medicine Nanjing China.
Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.
View Article and Find Full Text PDFIBRO Neurosci Rep
June 2025
Department of Anesthesiology, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China.
Introduction: Perioperative neurocognitive dysfunction (PND) is a significant challenge for patients who need surgery worldwide. Morphine can trigger an intense inflammatory reaction in the central nervous system (CNS) at the same time as analgesia, thus adverse effects aggravating PND. Microglia polarization is closely involved in the regulation of neuroinflammation and the TLR4/MyD88/NF-κB signaling pathway.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.
View Article and Find Full Text PDFNat Neurosci
January 2025
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA.
Humans and animals have a striking ability to learn relationships between items in experience (such as stimuli, objects and events), enabling structured generalization and rapid assimilation of new information. A fundamental type of such relational learning is order learning, which enables transitive inference (if A > B and B > C, then A > C) and list linking (A > B > C and D > E > F rapidly 'reassembled' into A > B > C > D > E > F upon learning C > D). Despite longstanding study, a neurobiologically plausible mechanism for transitive inference and rapid reassembly of order knowledge has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!