Objective: To evaluate the effects of creatine monohydrate (CMH) supplementation on global DNA methylation and disease-specific clinical symptoms in female patients with Rett syndrome (RTT).

Methods: Double-blind, randomized, placebo-controlled crossover trial of female patients with RTT. Participants received 200 mg/kg of either CMH or placebo daily for 6 months and switched following a 4-week washout period. Primary endpoints were change in global DNA methylation and in a RTT-specific symptom score as defined by medical history and clinical evaluation with Rett Syndrome Motor and Behavioral Assessment. Secondary endpoints were changes in biochemical markers of methionine metabolism.

Results: Eighteen female patients aged 3 to 25 years with clinically diagnosed typical RTT and MECP2 mutation at clinical Stages III or IV were studied. CMH supplementation resulted in a statistically significant increase of global methylation by 0.11 (95% confidence interval 0.03-0.19, p = .009) compared with placebo. Total and subscores of Rett Syndrome Motor and Behavioral Assessment tended to improve but without statistical significance.

Conclusion: CMH supplementation increases global DNA methylation statistically significantly. Scores were lower for creatine than for placebo reflecting clinical improvement but not reaching statistical significance. Biochemical variables of methionine-homocysteine remethylation are unaffected. Multicenter studies are urgently warranted to evaluate the long-term effects of CMH supplementation in an optimally homogenous RTT population over a prolonged period.

Download full-text PDF

Source
http://dx.doi.org/10.1097/DBP.0b013e31822177a8DOI Listing

Publication Analysis

Top Keywords

rett syndrome
16
cmh supplementation
16
global dna
12
dna methylation
12
female patients
12
effects creatine
8
randomized placebo-controlled
8
syndrome motor
8
motor behavioral
8
behavioral assessment
8

Similar Publications

DDX3X syndrome is often misdiagnosed as autism spectrum disorder (ASD, Rett Syndrome, and Dandy-Walker Syndrome). Precise phenotyping is needed with reference to neurodevelopmental diagnosis. Observation of behavior and communication in parents with DDX3X syndrome in the USA, France, and Poland; conversations with the parents of patients; and rudimentary information in evidence-based medical articles prompted us to identify differences in communication, play, and social interaction between children with ASD only, those with both ASD and , and those with only.

View Article and Find Full Text PDF

Rett syndrome (RTT), which predominantly affects females, arises in most cases from mutations in the () gene. When MeCP2 is impaired, it disrupts the regulation of numerous genes, causing the production of dysfunctional proteins associated with various multi-systemic issues in RTT. In this review, we explore the current insights into molecular signaling related to monoamines, immune response, and mitochondrial function, and their implications for the pathophysiology of RTT.

View Article and Find Full Text PDF

Background: Neurodevelopmental disorders (NDDs) affect approximately 15% of children and adolescents worldwide. This group of disorders is often polygenic with varying risk factors, with many associated genes converging on shared molecular pathways, including chromatin regulation and transcriptional control. Understanding how NDD-associated chromatin regulators and protein complexes orchestrate these regulatory pathways is crucial for elucidating NDD pathogenesis and developing targeted therapeutic strategies.

View Article and Find Full Text PDF

The Newborn Screening Programme Revisited: An Expert Opinion on the Challenges of Rett Syndrome.

Genes (Basel)

December 2024

Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.

Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, its purpose is to facilitate the earlier identification of rare conditions and thereby improve health-related outcomes for individuals.

View Article and Find Full Text PDF

Methyl CpG binding protein 2 (MeCP2) is a chromatin-associated protein that remains enigmatic despite more than 30 years of research, primarily due to the ever-growing list of its molecular functions, and, consequently, its related pathologies. Loss of function MECP2 mutations cause the neurodevelopmental disorder Rett syndrome (RTT); in addition, dysregulation of MeCP2 expression and/or function are involved in numerous other pathologies, but the mechanisms of MeCP2 regulation are unclear. Advancing technologies and burgeoning mechanistic theories assist our understanding of the complexity of MeCP2 but may inadvertently cloud it if not rigorously tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!