AI Article Synopsis

  • Understanding the triggers for differentiated cells to change their fate can shed light on important processes like development, tissue regeneration, and cancer.
  • Recent research has identified "Mixer Cells" in Drosophila (fruit flies) that undergo specific reprogramming during skin development.
  • The JNK signaling pathway is crucial for the formation of these Mixer Cells, suggesting that this model could connect the dots between development-related cell changes and regenerative processes.

Article Abstract

What triggers a differentiated cell to naturally change its cell fate? Cell reprogramming is a rare and intriguing phenomenon, from a developmental point of view. It has been mostly involved in boundary sharpening during development, tissue regeneration and cancer. Developmental models of the understanding of pathology-related cell reprogramming are yet to be established. Here we comment on the recently discovered "Mixer Cells" undergoing highly stereotyped developmental reprogramming during Drosophila epidermal morphogenesis. The JNK signaling pathway, which is involved in regenerative cell reprogramming, is essential to Mixer Cell formation. Thus the Mixer Cell model may provide a link between developmental cell reprogramming and regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.4161/fly.5.4.16354DOI Listing

Publication Analysis

Top Keywords

cell reprogramming
20
mixer cell
12
cell
9
cell formation
8
reprogramming drosophila
8
reprogramming
6
developmental
5
formation dorsal
4
dorsal closure
4
closure developmental
4

Similar Publications

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

Transcription factors (TFs) are indispensable for maintaining cell identity through regulating cell-specific gene expression. Distinct cell identities derived from a common progenitor are frequently perpetuated by shared TFs, yet the mechanisms that enable these TFs to regulate cell-specific targets are poorly characterized. We report that the TF NKX2.

View Article and Find Full Text PDF

Comparison of C-Acetate and F-FDG PET/CT for Immune Infiltration and Prognosis in Hepatocellular Carcinoma.

Cancer Sci

January 2025

Hepatobiliary Surgery Center, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.

Immunotherapy has revolutionized cancer treatment, making it a challenge to noninvasively monitor immune infiltration. Metabolic reprogramming in cancers, including hepatocellular carcinoma (HCC), is closely linked to immune status. In this study, we aimed to evaluate the ability of carbon-11 acetate (C-acetate) and fluorine-18 fluorodeoxyglucose (F-FDG) PET/CT findings in predicting overall survival (OS) and immune infiltration in HCC patients.

View Article and Find Full Text PDF

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

Differential Mitochondrial Redox Responses to the Inhibition of NAD Salvage Pathway of Triple Negative Breast Cancer Cells.

Cancers (Basel)

December 2024

Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD. Over expression of Nampt, the rate-limiting enzyme of the NAD biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!