Prolactin (PRL), synthesized and secreted from lactotrophs of the anterior pituitary gland, is tonically inhibited by hypothalamic dopamine (DA) throughout the female reproductive (estrous) cycle. Our laboratory has shown that DA hyperpolarizes these cells by activating G protein-coupled inwardly rectifying K(+) (GIRK) channels; however, this response is only observed on proestrus. While the cellular mechanisms that allow for functional expression of this unique DA-signaling pathway are unclear, we hypothesized that activation of the DA-GIRK effector pathway is due to the rise in circulating estrogen (E₂) during the preceding day of diestrus. Thus, we examined the effects of E₂ on primary lactotrophs isolated from female rats. Treatment with a physiological concentration of E₂ (40-80 pg/ml, in vivo or in vitro) induced a proestrous phenotype in diestrous lactotrophs. These cells exhibited a DA-induced membrane hyperpolarization, as well as a secretory rebound of PRL following DA withdrawal (characteristic of proestrous cells). Internal dialysis of GTPγS demonstrated that E₂ exposure enabled functional expression of GIRK channels, and this regulation by E₂ did not involve the D₂R. The effect of E₂ was blocked by the receptor antagonist, ICI 182,780, and by the protein synthesis inhibitor, cycloheximide. Single-cell analysis revealed increased mRNA expression of GIRK channel subunits in E₂-treated lactotrophs. While E₂ is known to have multiple actions on the lactotroph, the present findings illuminate a novel action of E₂ in lactotrophs-regulation of the expression of a DA effector, the GIRK channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290005 | PMC |
http://dx.doi.org/10.1152/ajpregu.00138.2011 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS.
View Article and Find Full Text PDFElife
December 2024
Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, United States.
Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1 neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, New York, NY, 10032-3784, USA. Electronic address:
Tumor associated epilepsy is a common and debilitating co-morbidity of brain tumors, for which inadequate treatments are available. Additionally, animal models suggest a potential link between seizures and tumor progression. Our group has previously described a mouse model of diffusely infiltrating glioma and associated chronic epilepsy.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
August 2024
Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M muscarinic receptor and metabotropic glutamate receptor 1 (mGlu) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB) receptor, indicating that CB activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia.
View Article and Find Full Text PDFNeurochem Res
November 2024
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!