Purpose: The aim of this pharmacokinetic-pharmacodynamic (PK-PD) analysis was to evaluate the pharmacologic characteristics of erlotinib and its main metabolite (OSI-420) in pediatric patients compared with those in adult patients.

Experimental Design: Plasma concentrations of erlotinib and OSI-420 of 46 children with malignant brain tumors included in a phase I study and 42 adults with head and neck carcinoma were analyzed by a population-pharmacokinetic method (NONMEM). The effect of several covariates and single nucleotide polymorphisms (SNP) in ABCB1, ABCG2, and CYP3A5 on pharmacokinetic parameters was evaluated. PK/PD relationships between plasma drug exposure Area Under the Curve (AUC) at day 1 and skin toxicity were studied in children and compared with the relationship observed in adults.

Results: A significant difference in erlotinib clearance (P = 0.0001), when expressed in L·h(-1)·kg(-1), was observed between children and adults with mean values of 0.146 and 0.095, respectively (mean difference = 0.051 L·h(-1)·kg(-1), SD = 0.0594). However, a common covariate model was obtained describing erlotinib clearance according to body weight, alanine aminotransferase, ABCB1, and CYP3A5 polymorphisms (2677G > T/A and 6986G > A) for both children and adult patients. The PK-PD relationship was very consistent between the children and adult groups with risk of skin toxicity rising with increasing erlotinib AUC.

Conclusions: The nonlinear population approach applied to pharmacokinetic data combined with a pharmacokinetic-pharmacodynamic analysis revealed that the higher recommended dose in children (125 mg/m(2)/day) compared with adults (90 mg/m(2)/day) is mainly due to pharmacokinetic rather than pharmacodynamic particularities.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-10-3278DOI Listing

Publication Analysis

Top Keywords

children
8
skin toxicity
8
erlotinib clearance
8
children adult
8
erlotinib
6
population analysis
4
analysis erlotinib
4
adults
4
erlotinib adults
4
adults children
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!