Bony fish swim with a level of agility that is unmatched in human-developed systems. This is due, in part, to the ability of the fish to carefully control hydrodynamic forces through the active modulation of the fins' kinematics and mechanical properties. To better understand how fish produce and control forces, biorobotic models of the bluegill sunfish's (Lepomis macrochirus) caudal fin and pectoral fins were developed. The designs of these systems were based on detailed analyses of the anatomy, kinematics, and hydrodynamics of the biological fins. The fin models have been used to investigate how fin kinematics and the mechanical properties of the fin-rays influence propulsive forces and to explore kinematic patterns that were inspired by biological motions but that were not explicitly performed by the fish. Results from studies conducted with the fin models indicate that subtle changes to the kinematics and mechanical properties of fin rays can significantly impact the magnitude, direction, and time course of the 3D forces used for propulsion and maneuvers. The magnitude of the force tends to scale with the fin's stiffness, but the direction of the force is not invariant, and this causes disproportional changes in the magnitude of the thrust, lift, and lateral components of force. Results from these studies shed light on the multiple strategies that are available to the fish to modulate fin forces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/icb/icr036 | DOI Listing |
J Clin Med
January 2025
IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy.
While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Xi'an Aerospace Chemical Propulsion Co., Ltd., Xi'an 710089, China.
In this paper, we propose an optimal parking path planning method based on numerical solving, which leverages the concept of the distance between convex sets. The obstacle avoidance constraints were transformed into continuous, smooth nonlinear constraints using the Lagrange dual function. This approach enables the determination of a globally optimal parking path while satisfying vehicular kinematic constraints.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Mechanical Engineering, Baoji University of Arts and Sciences, Baoji 721016, China.
The surface roughness of hole machining greatly influences the mechanical properties of parts, such as early fatigue failure and corrosion resistance. The boring and trepanning association (BTA) deep hole drilling with axial vibration assistance is a compound machining process of the tool cutting and the guide block extrusion. At the same time, the surface of the hole wall is also ironed by the axial large amplitude and low-frequency vibration of the guide block.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Civil Engineering, Mechanics and Petrochemistry, Warsaw University of Technology, 09-400 Płock, Poland.
This article compares the rheological and tribological properties of three ionic liquids: Tributyl(methyl)phosphonium dimethyl phosphate 97%-MFCD, 1-Butyl-3-methylimidazolium hexafluorophosphate 97%-BMIMPF6, and 1-Butyl-3-methylimidazolium tetrafluoroborate 98%-BMIMBF4. Their density and kinematic viscosity at 20 °C and 40 °C were investigated, and tribological tests were carried out at the same temperatures with ball-on-disc contact. The test materials were made of 100Cr6 steel.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopaedic Surgery, Spine Section, Bone and Joint Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
Objective: Combining oblique lumbar interbody fusion (OLIF) with posterior pedicle screw fixation (PPSF) has been proposed to reduce cage subsidence, especially in osteoporotic spines. Recently, anterolateral screw-rod fixation has gained interest as it allows direct pathology observation and avoids a posterior approach. However, controversies exist between anterolateral screw fixation systems and traditional PPSF due to variations in osteoporotic vertebral mineral density, screw fixation positions, and fixation methods (bicortical vs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!