Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Premise Of The Study: Tea Unigene-derived MicroSatellite (TUGMS) markers were identified from the publicly available EST data in Camellia sinensis for characterization and future genome mapping studies in tea.
Methods And Results: One hundred twelve novel TUGMS markers were identified from 4356 unigenes derived by clustering of 12788 random ESTs in C. sinensis. Amplification-based validation of the TUGMS loci proved them to be highly polymorphic [an average (av.) of 5.24 alleles], heterozygous (H(E), av. 0.746; H(o), av. 0.566) and informative (PIC, av. 0.392). TUGMS loci were 100% transferable in cultivated C. assamica and C. assamica subsp. lasiocalyx and highly cross-transferrable to the related species C. japonica, C. rosiflora, and C. sasanqua.
Conclusions: These 112 novel highly polymorphic TUGMS markers with proven cross-species transferability will facilitate the future genetic diversity and genome mapping studies in tea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.1000525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!