Tragopogon mirus and T. miscellus (both 2n = 4x = 24) are recent allotetraploids derived from T. dubius × T. porrifolius and T. dubius × T. pratensis (each 2n = 2x = 12), respectively. The genome sizes of T. mirus are additive of those of its diploid parents, but at least some populations of T. miscellus have undergone genome downsizing. To survey for genomic rearrangements in the allopolyploids, four repetitive sequences were physically mapped. TPRMBO (unit size 160 base pairs [bp]) and TGP7 (532 bp) are tandemly organized satellite sequences isolated from T. pratensis and T. porrifolius, respectively. Fluorescent in situ hybridization to the diploids showed that TPRMBO is a predominantly centromeric repeat on all 12 chromosomes, while TGP7 is a subtelomeric sequence on most chromosome arms. The distribution of tandem repetitive DNA loci (TPRMBO, TGP7, 18S-5.8S-26S rDNA, and 5S rDNA) gave unique molecular karyotypes for the three diploid species, permitting the identification of the parental chromosomes in the polyploids. The location and number of these loci were inherited without apparent changes in the allotetraploids. There was no evidence for major genomic rearrangements in Tragopogon allopolyploids that have arisen multiple times in North America within the last 80 yr.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.91.7.1022DOI Listing

Publication Analysis

Top Keywords

additive diploid
8
genomic rearrangements
8
molecular cytogenetic
4
cytogenetic analysis
4
analysis evolved
4
evolved tragopogon
4
tragopogon asteraceae
4
asteraceae allopolyploids
4
allopolyploids reveal
4
reveal karyotype
4

Similar Publications

Copy number variants (CNVs) are prevalent in both diploid and haploid genomes, with the latter containing a single copy of each gene. Studying CNVs in genomes from single or few cells is significantly advancing our knowledge in human disorders and disease susceptibility. Low-input including low-cell and single-cell sequencing data for haploid and diploid organisms generally displays shallow and highly non-uniform read counts resulting from the whole genome amplification steps that introduce amplification biases.

View Article and Find Full Text PDF

Characterization of Diploid Wheat Flour and its Possible Practical Use.

J Appl Glycosci (1999)

November 2024

2 Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University.

The application of flour is determined by the composition of its starch and storage proteins. Previously isolated diploid wheat is known to be amylose-free and possesses the same amylopectin structure as the wild-type. To reveal its characteristics, starch, protein, lipid, fiber, gluten, and allergen contents and rheological properties were analyzed and compared to its parental wild-type diploid wheat and commercially available hexaploid wheats.

View Article and Find Full Text PDF

Background: The genus Allium is known for its high chromosomal variability, but most chromosome counts are based on a few individuals and genome size (GS) reports are limited in certain taxonomic groups. This is evident in the Allium sect. Codonoprasum, a species-rich (> 150 species) and taxonomically complex section with weak morphological differences between taxa, the presence of polyploidy and frequent misidentification of taxa.

View Article and Find Full Text PDF

This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated.

View Article and Find Full Text PDF

Experiments comparing diploids with polyploids and in single grassland sites show that nitrogen and/or phosphorus availability influences plant growth and community composition dependent on genome size; specifically, plants with larger genomes grow faster under nutrient enrichments relative to those with smaller genomes. However, it is unknown if these effects are specific to particular site localities with speciifc plant assemblages, climates, and historical contingencies. To determine the generality of genome size-dependent growth responses to nitrogen and phosphorus fertilization, we combined genome size and species abundance data from 27 coordinated grassland nutrient addition experiments in the Nutrient Network that occur in the Northern Hemisphere across a range of climates and grassland communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!