Low temperature is one of the major abiotic stresses limiting the productivity and geographical distribution of many important crops. To identify proteins associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 (BY-2) cell suspension culture, we utilized a proteomic approach with two-dimensional electrophoresis to compare proteins from samples of treated with or without chilling treatment at 4 °C. One protein specifically more abundant in chilling treated sample was identified and designated as NtLEA7-3. Rapid amplification of cDNA ends gave rise to a full-length NtLEA7-3 cDNA with a complete open reading frame of 1267 bp, encoding a 322 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced NtLEA7-3 protein sequence shared a high identity with LEA-like proteins from other plants. Subcellular localization analysis indicated that the NtLEA7-3 was localized exclusively in the nucleus. When the gene was overexpressed in bright yellow-2 cells, the transgenic bright yellow-2 cells show more resistant to chilling stress than the wild-type cells. In addition, transgenic Arabidopsis plants overexpressing the NtLEA7-3 are much more resistant to cold, drought, and salt stresses. Interestingly, the expression of NtLEA7-3 in tobacco was not tissue-specific and induced by chilling, drought and salt stresses. All of these, taken together, suggest that NtLEA7-3 is worthwhile to elucidate the contribution of the proteins to the tolerance mechanism to chilling stress, and can be considered as a potential target for crop genetic improvement in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3226408PMC
http://dx.doi.org/10.1074/mcp.M111.010363DOI Listing

Publication Analysis

Top Keywords

chilling stress
16
bright yellow-2
16
associated chilling
8
stress nicotiana
8
nicotiana tabacum
8
tabacum bright
8
cell suspension
8
suspension culture
8
yellow-2 cells
8
drought salt
8

Similar Publications

As our planet faces increasing environmental challenges, such as biotic pressures, abiotic stressors, and climate change, it is crucial to understand the complex mechanisms that underlie stress responses in crop plants. Over past few years, the integration of techniques of proteomics, transcriptomics, and genomics like LC-MS, IT-MS, MALDI-MS, DIGE, ESTs, SAGE, WGS, GWAS, GBS, 2D-PAGE, CRISPR-Cas, cDNA-AFLP, HLS, HRPF, MPSS, CAGE, MAS, IEF, MudPIT, SRM/MRM, SWATH-MS, ESI have significantly enhanced our ability to comprehend the molecular pathways and regulatory networks, involved in balancing the ecosystem/ecology stress adaptation. This review offers thorough synopsis of the current research on utilizing these multi-omics methods (including metabolomics, ionomics) for battling abiotic (salinity, temperature (chilling/freezing/cold/heat), flood (hypoxia), drought, heavy metals/loids), biotic (pathogens like fungi, bacteria, virus, pests, and insects (aphids, caterpillars, moths, mites, nematodes) and climate change stress (ozone, ultraviolet radiation, green house gases, carbon dioxide).

View Article and Find Full Text PDF

Ensuring food security is one of the main challenges related to a growing global population under climate change conditions. The increasing soil salinity levels, drought, heatwaves, and late chilling severely threaten crops and often co-occur in field conditions. This work aims to provide deeper insight into the impact of single vs.

View Article and Find Full Text PDF

Chromatin Accessibility Mediated by CHROMATIN REMODELING 11 Promotes Chilling Tolerance in Rice.

Plant Physiol

January 2025

The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.

Chromatin remodeling plays a crucial role in controlling gene transcription by modifying chromatin structure. However, the involvement of chromatin remodeling in plant stress responses, especially cold tolerance, through chromatin accessibility remains largely unexplored. Here, we report that rice (Oryza sativa L.

View Article and Find Full Text PDF

Transcriptional regulation of miR528-PPO module by miR156 targeted SPLs orchestrates chilling response in banana.

Mol Hortic

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China.

Banana is sensitive to cold stress and often suffers from chilling injury with browning peel and failure to normal ripening. We have previously reported that banana chilling injury is accompanied by a reduction of miR528 accumulation, alleviating the degradation of its target gene MaPPO and raising ROS levels that cause peel browning. Here, we further revealed that the miR528-MaPPO cold-responsive module was regulated by miR156-targeted SPL transcription factors, and the miR156c-MaSPL4 module was also responsive to cold stress in banana.

View Article and Find Full Text PDF

Sodium hydrosulfide application induces chilling tolerance in banana fruits by enhancing antioxidant gene expression through the upregulation of the ethylene response factors MaERF53L/121L.

Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Sodium hydrosulfide (NaHS), a hydrogen sulfide (H₂S) donor, effectively mitigates chilling injury (CI) in bananas; however, the underlying molecular mechanisms remain unclear. This study demonstrated that NaHS alleviates CI symptoms by activating antioxidant defense systems that reduce oxidative stress induced by CI. Transcriptomic analysis revealed 1003 differentially expressed genes in three sample groups, with enrichment in pathways related to cellular processes, metabolic activity, and secondary metabolite biosynthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!