AI Article Synopsis

  • Maintaining a connection between the nucleus and cytoskeleton is essential for cellular functions that involve the movement and positioning of the nucleus, as well as for responding to external mechanical signals.
  • The LINC complex, which links the nucleoskeleton to the cytoskeleton, plays a vital role in transmitting intracellular forces, but its significance had not been previously fully tested.
  • Disruption of the LINC complex leads to impaired force transmission and affects cell organization and function, resulting in issues such as abnormal nuclear positioning and reduced cell migration, potentially linked to muscular dystrophies and cardiomyopathies.

Article Abstract

Maintaining physical connections between the nucleus and the cytoskeleton is important for many cellular processes that require coordinated movement and positioning of the nucleus. Nucleo-cytoskeletal coupling is also necessary to transmit extracellular mechanical stimuli across the cytoskeleton to the nucleus, where they may initiate mechanotransduction events. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, formed by the interaction of nesprins and SUN proteins at the nuclear envelope, can bind to nuclear and cytoskeletal elements; however, its functional importance in transmitting intracellular forces has never been directly tested. This question is particularly relevant since recent findings have linked nesprin mutations to muscular dystrophy and dilated cardiomyopathy. Using biophysical assays to assess intracellular force transmission and associated cellular functions, we identified the LINC complex as a critical component for nucleo-cytoskeletal force transmission. Disruption of the LINC complex caused impaired propagation of intracellular forces and disturbed organization of the perinuclear actin and intermediate filament networks. Although mechanically induced activation of mechanosensitive genes was normal (suggesting that nuclear deformation is not required for mechanotransduction signaling) cells exhibited other severe functional defects after LINC complex disruption; nuclear positioning and cell polarization were impaired in migrating cells and in cells plated on micropatterned substrates, and cell migration speed and persistence time were significantly reduced. Taken together, our findings suggest that the LINC complex is critical for nucleo-cytoskeletal force transmission and that LINC complex disruption can result in defects in cellular structure and function that may contribute to the development of muscular dystrophies and cardiomyopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143636PMC
http://dx.doi.org/10.1074/jbc.M111.233700DOI Listing

Publication Analysis

Top Keywords

linc complex
20
force transmission
16
interaction nesprins
8
nesprins sun
8
sun proteins
8
proteins nuclear
8
nuclear envelope
8
nucleus cytoskeleton
8
intracellular forces
8
complex critical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!