Relationships within balsaminoid Ericales: a wood anatomical approach.

Am J Bot

Laboratory of Plant Systematics, Institute of Botany and Microbiology, K.U.Leuven, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium;

Published: June 2005

Wood samples of 49 specimens representing 31 species and 11 genera of woody balsaminoids, i.e., Balsaminaceae, Marcgraviaceae, Pellicieraceae, and Tetrameristaceae, were investigated using light microscopy and scanning electron microscopy. The wood structure of Marcgraviaceae, Pellicieraceae, and Tetrameristaceae is characterized by radial vessel multiples with simple perforation plates, alternate vessel pitting, apotracheal and paratracheal parenchyma, septate libriform fibers, and the presence of raphides in ray cells. Tetrameristaceae and Pellicieraceae are found to be closely related based on the occurrence of unilaterally compound vessel-ray pitting and multiseriate rays with long uniseriate ends. The narrow rays in Pelliciera are characteristic of this genus, but a broader concept of Tetrameristaceae including Pelliciera is favored. Within Marcgraviaceae, wide rays (more than five-seriate) are typical of the genus Marcgravia. Furthermore, there is evidence that the impact of altitude and habit plays an important role in the wood structure of this family. The wood structure of Balsaminaceae cannot be compared systematically with other balsaminoids because of their secondary woodiness. Balsaminaceae wood strongly differs due to the presence of exclusively upright ray cells in Impatiens niamniamensis, the absence of rays in Impatiens arguta, and the occurrence of several additional paedomorphic features in both species.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.92.6.941DOI Listing

Publication Analysis

Top Keywords

wood structure
12
marcgraviaceae pellicieraceae
8
pellicieraceae tetrameristaceae
8
ray cells
8
wood
6
relationships balsaminoid
4
balsaminoid ericales
4
ericales wood
4
wood anatomical
4
anatomical approach
4

Similar Publications

Background: Our current understanding of the molecular mechanisms underlying amyloidogenesis in Alzheimer's Disease (AD) is limited by the lack of comprehensive models closely resembling human pathology. Human induced pluripotent stem cell (hiPSC) 3-dimensional (3D) models, such as brain organoids and neurospheres, are emerging as innovative approaches to model neurodegenerative diseases in vitro. However, they rely on hiPSC self-organization and are therefore characterized by low reproducibility and homogeneity.

View Article and Find Full Text PDF

Young women of color frequently face discrimination, reflecting the intersecting societal influences of sexism and racism. Although friendships play a significant role in women's lives, there is a lack of research on the role of friendships in navigating exposure to gendered racial discrimination (in-person and social media) and associated mental health. This study investigated the extent to which the content of friendship conversations (i.

View Article and Find Full Text PDF

Structural and electronic features enabling delocalized charge-carriers in CuSbSe.

Nat Commun

January 2025

Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom.

Inorganic semiconductors based on heavy pnictogen cations (Sb and Bi) have gained significant attention as potential nontoxic and stable alternatives to lead-halide perovskites for solar cell applications. A limitation of these novel materials, which is being increasingly commonly found, is carrier localization, which substantially reduces mobilities and diffusion lengths. Herein, CuSbSe is investigated and discovered to have delocalized free carriers, as shown through optical pump terahertz probe spectroscopy and temperature-dependent mobility measurements.

View Article and Find Full Text PDF

Robust proteome profiling of cysteine-reactive fragments using label-free chemoproteomics.

Nat Commun

January 2025

Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, UK.

Identifying pharmacological probes for human proteins represents a key opportunity to accelerate the discovery of new therapeutics. High-content screening approaches to expand the ligandable proteome offer the potential to expedite the discovery of novel chemical probes to study protein function. Screening libraries of reactive fragments by chemoproteomics offers a compelling approach to ligand discovery, however, optimising sample throughput, proteomic depth, and data reproducibility remains a key challenge.

View Article and Find Full Text PDF

This review explores the diverse applications of nitrogen-doped carbon derived from Albizia procera, known as white siris. Native to the Indian subcontinent and tropical Asia, this species thrives in varied conditions, contributing to sustainable development. The nitrogen-rich leaves of Albizia procera are an excellent source for synthesizing nitrogen-doped carbon, which possesses remarkable properties for advanced technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!