The domestication of insect locomotion has been recently investigated through microelectrode based systems implanted in the insect to tap into its neuromuscular system. Benefiting from developmental changes, the idea of performing such surgical implantation during metamorphic development enabled the fusion of engineered constructs to these living biological organisms. This study uses electrochemical analysis to provide a preliminary quantitative comparison of tissue-electrode coupling over the course of metamorphic development and after eclosion, where PEDOT:PSS coated gold electrodes are implanted in the insect during the early pupal stages and right after emergence. An average 1 kHz impedance of 8.9 k was obtained with pupal stage inserted electrodes, with a stored charge of 52 mC/cm2 at the interface as characterized by cyclic voltammetry 10 days after emergence. 5.1 mC/cm2 of this charge was successfully injected into the tissue through charge balanced biphasic pulses. In comparison, implanted electrodes in the adult state caused a 1 kHz impedance of 12.1 k, where the stored charge was 38 mC/cm2 with an injectable charge amount of 3.5 mC/cm2. Finally, to shed light on possible reasons for improvement in the bioelectrical coupling, equivalent circuit models were formed and the extracted parameters were correlated with metamorphic development of pupal tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2011.2158822DOI Listing

Publication Analysis

Top Keywords

metamorphic development
12
implanted insect
8
khz impedance
8
stored charge
8
charge mc/cm2
8
charge
5
vivo electrochemical
4
electrochemical characterization
4
characterization tissue-electrode
4
tissue-electrode interface
4

Similar Publications

Optimization of In-Situ Growth of Superconducting Al/InAs Hybrid Systems on GaAs for the Development of Quantum Electronic Circuits.

Materials (Basel)

January 2025

CNR-IOM-Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy.

Hybrid systems consisting of highly transparent channels of low-dimensional semiconductors between superconducting elements allow the formation of quantum electronic circuits. Therefore, they are among the novel material platforms that could pave the way for scalable quantum computation. To this aim, InAs two-dimensional electron gases are among the ideal semiconductor systems due to their vanishing Schottky barrier; however, their exploitation is limited by the unavailability of commercial lattice-matched substrates.

View Article and Find Full Text PDF

The multifaceted role of XCL1 in health and disease.

Protein Sci

February 2025

Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions.

View Article and Find Full Text PDF

The transition to flying insects: lessons from evo-devo and fossils.

Curr Opin Insect Sci

January 2025

Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 00 Praha 2, Czech Republic. Electronic address:

Insects are the only arthropod group to achieve powered flight, which facilitated their explosive radiation on land. It remains a significant challenge to understand the evolutionary transition from non-flying (apterygote) to flying (pterygote) insects due to the large gap in the fossil record. Under such situation, ontogenic information has historically been used to compensate fossil evidence.

View Article and Find Full Text PDF

This article presents a metamorphic model to describe the manifold role of narrative identity, a person's internal life story, across the course of mental illness and personal recovery. First, early adversity and negative co-authoring may contribute to the development of a fragile life story, which itself may combine with life stressors to increase the likelihood of mental illness. Second, mental illness may negatively impact the development of narrative identity, which in turn may exacerbate the devastating effects of mental illness on daily functioning.

View Article and Find Full Text PDF

Phenanthrene toxicity during early development of the neotropical tree frog Dendropsophus branneri.

Aquat Toxicol

January 2025

Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil; Aquatic Ecotoxicology Laboratory, Centro de Biociências, Departamento de Zoologia, Universidade Federal de Pernambuco, Av. Professor Moraes Rego, S/N - Cidade Universitária, Recife 50670-420, Brazil. Electronic address:

Phenanthrene is considered a priority polycyclic aromatic hydrocarbon due to its ubiquitous presence in aquatic and terrestrial environments and its toxic potential. Tadpoles are sensitive ecotoxicological models that provide important information regarding effects of contaminants in amphibian species. The goal of the present study was to generate information regarding the acute and chronic toxicity of phenanthrene to the neotropical tree frog Dendropsophus branneri early life stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!