Background: In this work we propose a rapid method based on visible and near-infrared (Vis-NIR) spectroscopy to determine the occurrence of double-stranded RNA (dsRNA) viruses in Epichloë festucae strains isolated from Festuca rubra plants. In addition, we examined the incidence of infections by E. festucae in populations of F. rubra collected in natural grasslands of Western Spain.
Methods: Vis-NIR spectra (400-2498 nm) from 124 virus-infected and virus-free E. festucae isolates were recorded directly from ground and freeze-dried mycelium. To estimate how well the spectra for uninfected and infected fungal samples could be differentiated, we used partial least-squares discriminant analysis (PLS1-DA) and several data pre-treatments to develop calibration models.
Results: Applying the best regression model, obtained with two sampling years and using standard normal variate (SNV) combined with first derivative transformation to a new validating data set (42 samples), we obtained a correct classification for 75% of the uninfected isolates and up to 86% of the infected isolates.
Conclusions: The results obtained suggest that Vis-NIR spectroscopy is a promising technology for detection of viral infections in fungal samples when an alternative faster approach is desirable. It provides a tool adequately exact and more time- and cost-saving than the conventional reference analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138431 | PMC |
http://dx.doi.org/10.1186/1743-422X-8-286 | DOI Listing |
Chemosphere
January 2025
University of Rzeszow, Institute of Food Technology and Nutrition, Zelwerowicza 4, 35-601, Rzeszow, Poland.
The hunting of waterfowl may contribute significantly to environmental contamination through the leaching of highly toxic elements (As, Pb, Sb) from spent gunshot deposited on hunting grounds. It is therefore clearly necessary to develop a biogeochemical protocol that might decipher the fate of spent gunshot in the environment. In that context, we present a study that follows the laboratory simulation approach and discusses the methodical pros and cons of the protocol.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Moscow Region, 142290, Russia.
VKM Ac-1390 (family Microbacteriaceae, class Actinomycetes) contains three rhamnose-containing glycopolymers in the cell wall, the structures of which were established by chemical and NMR spectroscopy methods. The first polymer, a rhamnomannan, consists of repeating tetrasaccharide units with xylopyranose side residues, →2)-α-[β-D-Xyl-(1→3)]-D-Rha-(1→3)-α-D-Man-(1→2)-α-D-Rha-(1→3)-α-D-Man-(1→. The second polymer found in minor amounts, is a rhamnan, →2)-α-D-Rha-(1→3)-α-D-Rha-(1→.
View Article and Find Full Text PDFMicroorganisms
December 2024
Botanical Garden, Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania.
Many endophytic fungi are approved as plant growth stimulants, and several commercial biostimulants have already been introduced in agricultural practice. However, there are still many species of fungi whose plant growth-promoting properties have been understudied or not studied at all. We examined the growth-promoting effect in spring barley () and Italian ryegrass () induced by three endophytic fungi previously obtained from the roots of / grasses.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
Vegetation concrete is one of the most widely used substrates in ecological slope protection, but its practical application often limits the growth and nutrient uptake of plant roots due to consolidation problems, which affects the effectiveness of slope protection. This paper proposed the use of a plant protein foaming agent as a porous modifier to create a porous, lightweight treatment for vegetation concrete. Physical performance tests, direct shear tests, plant growth tests, and scanning electron microscopy experiments were conducted to compare and analyze the physical, mechanical, microscopic characteristics, and phyto-capabilities of differently treated vegetation concrete.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States.
Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!