Understanding the kinetics of reactions in molecular thin films can aid in the molecular engineering of organic photovoltaics and biosensors. We have coupled two analytical methods, transient absorbance spectroscopy (TAS) and attenuated total reflectance (ATR), in a relatively simple arrangement when compared with previous TAS/ATR instruments to interrogate molecular structure and photochemistry at interfaces. The multimode planar waveguide geometry provides a significant path length enhancement relative to a conventional transmission geometry, making it feasible to perform measurements on low-surface-coverage films. The performance of the instrument was assessed using a thin film composed of purple membrane (PM) fragments containing bacteriorhodopsin deposited onto PDAC, a positively charged polymer. The surface coverage of retinal chromophore in this film is ∼0.1 monolayer and its orientation distribution is anisotropic, with a mean tilt angle of 68° from surface normal. After photoinduced formation of the transient M state, the chromophore decays to the ground state in 4.4 ± 0.6 ms, equivalent to the decay of suspended PM fragments, which shows that deposition on PDAC does not alter M-state photokinetics. The surface coverage of the M state is calculated to be 2 pmol/cm(2), which is ∼1% of a close-packed monolayer. This work demonstrates that TAS/ATR can be used to probe structure and photochemical kinetics in molecular films at extremely low surface coverages.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac2011526DOI Listing

Publication Analysis

Top Keywords

photochemical kinetics
8
multimode planar
8
planar waveguide
8
surface coverage
8
measuring photochemical
4
kinetics submonolayer
4
films
4
submonolayer films
4
films transient
4
transient atr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!