This work describes an exploratory NMR metabonomic study of second trimester maternal urine and plasma, in an attempt to characterize the metabolic changes underlying prenatal disorders and identify possible early biomarkers. Fetal malformations have the strongest metabolic impact in both biofluids, suggesting effects due to hypoxia (leading to hypoxanthine increased excretion) and a need for enhanced gluconeogenesis, with higher ketone bodies (acetone and 3-hydroxybutyric acid) production and TCA cycle demand (suggested by glucogenic amino acids and cis-aconitate overproduction). Choline and nucleotide metabolisms also seem affected and a distinct plasma lipids profile is observed for mothers with fetuses affected by central nervous system malformations. Urine from women who subsequently develop gestational diabetes mellitus exhibits higher 3-hydroxyisovalerate and 2-hydroxyisobutyrate levels, probably due to altered biotin status and amino acid and/or gut metabolisms (the latter possibly related to higher BMI values). Other urinary changes suggest choline and nucleotide metabolic alterations, whereas lower plasma betaine and TMAO levels are found. Chromosomal disorders and pre-preterm delivery groups show urinary changes in choline and, in the latter case, in 2-hydroxyisobutyrate. These results show that NMR metabonomics of maternal biofluids enables the noninvasive detection of metabolic changes associated to prenatal disorders, thus unveiling potential disorder biomarkers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr200352mDOI Listing

Publication Analysis

Top Keywords

prenatal disorders
12
exploratory nmr
8
nmr metabonomics
8
study second
8
second trimester
8
trimester maternal
8
maternal urine
8
metabolic changes
8
choline nucleotide
8
urinary changes
8

Similar Publications

Unraveling the genetic mysteries of spinal muscular atrophy in Chinese families.

Orphanet J Rare Dis

January 2025

The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.

Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.

Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.

View Article and Find Full Text PDF

Congenital muscular dystrophies and myopathies: the leading cause of genetic muscular disorders in eleven Chinese families.

BMC Musculoskelet Disord

January 2025

Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, China.

Background: Congenital muscular dystrophies (CMDs) and myopathies (CMYOs) are a clinically and genetically heterogeneous group of neuromuscular disorders that share common features, such as muscle weakness, hypotonia, characteristic changes on muscle biopsy and motor retardation. In this study, we recruited eleven families with early-onset neuromuscular disorders in China, aimed to clarify the underlying genetic etiology.

Methods: Essential clinical tests, such as biomedical examination, electromyography and muscle biopsy, were applied to evaluate patient phenotypes.

View Article and Find Full Text PDF

Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!