Excessive generation of reactive oxygen species (ROS) is considered to play an important role in arsenic-induced carcinogenicity in the liver, lungs, and urinary bladder. However, little is known about the mechanism of ROS-based carcinogenicity, including where the ROS are generated, and which arsenic species are the most effective ROS inducers. In order to better understand the mechanism of arsenic toxicity, rat liver RLC-16 cells were exposed to arsenite (iAs(III)) and its intermediate metabolites [i.e., monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III))]. MMA(III) (IC(50) = 1 μM) was found to be the most toxic form, followed by DMA(III) (IC(50) = 2 μM) and iAs(III) (IC(50) = 18 μM). Following exposure to MMA(III), ROS were found to be generated primarily in the mitochondria. DMA(III) exposure resulted in ROS generation in other organelles, while no ROS generation was seen following exposures to low levels of iAs(III). This suggests the mechanisms of induction of ROS are different among the three arsenicals. The effects of iAs(III), MMA(III), and DMA(III) on activities of complexes I-IV in the electron transport chain (ETC) of rat liver submitochondrial particles and on the stimulation of ROS production in intact mitochondria were also studied. Activities of complexes II and IV were significantly inhibited by MMA(III), but only the activity of complexes II was inhibited by DMA(III). Incubation with iAs(III) had no inhibitory effects on any of the four complexes. Generation of ROS in intact mitochondria was significantly increased following incubation with MMA(III), while low levels of ROS generation were observed following incubation with DMA(III). ROS was not produced in mitochondria following exposure to iAs(III). The mechanism underlying cell death is different among As(III), MMA(III), and DMA(III), with mitochondria being one of the primary target organelles for MMA(III)-induced cytotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/tx200156k | DOI Listing |
Hum Cell
May 2023
Department of Gastroenterology and Hepatology, The First Hospital of Shanxi Medical University, Taiyuan, China.
The prognosis of hepatocellular carcinoma (HCC) is challenging due to its heterogeneity. Ferroptosis and amino acid metabolism have been shown to be closely related to HCC. We obtained HCC-related expression data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases.
View Article and Find Full Text PDFJ Dairy Sci
February 2021
Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%).
View Article and Find Full Text PDFDrug Metab Dispos
October 2020
Department of Neurology, Oregon Health and Science University, Portland, Oregon (K.M.W., J.F.Q., A.S.); Departments of Chemistry (A.A.M., C.S.M.) and Pharmaceutical Sciences (J.F.S.) and Linus Pauling Institute (A.A.M., J.F.S.), Oregon State University, Corvallis, Oregon; BioIVT, Durham, North Carolina (R.M.L., C.L.M., T.T.B.); and Department of Neurology, Veterans Affairs Portland Health Care System Center, Portland, Oregon (J.F.Q.)
(CA) shows considerable promise for development as a botanical drug for cognitive decline. Its primary bioactive components include triterpene glycosides asiaticoside and madecassoside and their corresponding aglycones asiatic acid and madecassic acid. Exploration of the bioactivity of CA's caffeoylquinic acids is ongoing.
View Article and Find Full Text PDFACS Med Chem Lett
September 2019
Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.
Vaccinia-related kinases 1 and 2 (VRK1 and VRK2) are human Ser/Thr protein kinases associated with increased cell division and neurological disorders. Nevertheless, the cellular functions of these proteins are not fully understood. Despite their therapeutic potential, there are no potent and specific inhibitors available for VRK1 or VRK2.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
July 2019
Department of Botany, Gandhi Faiz-e-Aam College, Shahajahanpur 242001, Uttar Pradesh, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!