A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Histochemical and ultrastructural analysis of pathology and cell responses in gills of channel catfish affected with proliferative gill disease. | LitMetric

Histochemical and ultrastructural analysis of pathology and cell responses in gills of channel catfish affected with proliferative gill disease.

Dis Aquat Organ

Fisheries and Oceans Canada, Pacific Biological Station, Aquatic Animal Health Unit, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada.

Published: April 2011

Pond-reared channel catfish Ictalurus punctatus with proliferative gill disease (PGD), caused by the myxozoan parasite Henneguya spp., were examined with light and transmission electron microscopy to better characterize the inflammatory response during infection. The early stages of disease are characterized by the destruction of collagen in the matrix of the gill filament cartilage causing weakness and breaks within the gill filaments. These early lesions lacked a notable inflammatory response around the disrupted cartilage, a chondrocyte response was not apparent, and the parasite was not present, suggesting that the cartilage breaks occur prior to inflammation and arrival of the parasite in the gill. In later lesions, a significant inflammatory response was generated in areas of disrupted cartilage, and the inflammatory infiltrate was composed of a mixed population of granulocytes including neutrophils and cells that resembled eosinophils. The majority of eosinophil-like cells demonstrated evidence of degranulation. Trophozoites of Henneguya spp. were surrounded by a uniform population of cells believed to be neutrophils. The granulocytes were infiltrated within the dense collagen layer of the gill filament cartilage and often appeared within chondrocyte lacunae in place of the chondrocyte. The gill lamellae adjacent to the lesions were fused and contained an inflammatory infiltrate containing granulocytes and cells with pericentriolar granules that resembled previous descriptions of Langerhans-like cells. These cells were abundant within damaged lamellar epithelium, but were only rarely found within the gill filament. Lesions that appeared to be recovering lacked the dense collagenous layer around the cartilage and contained hyperplastic and hypertrophic chondrocytes that formed a callus. Other chondrocytes in the lesions had ultrastructural features indicative of cell death.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao02322DOI Listing

Publication Analysis

Top Keywords

inflammatory response
12
gill filament
12
channel catfish
8
gill
8
proliferative gill
8
gill disease
8
henneguya spp
8
filament cartilage
8
disrupted cartilage
8
inflammatory infiltrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!