This communication reports the design and fabrication of porous scaffolds of poly(ε-caprolactone) (PCL) and PCL loaded with hydroxyapatite (HA) nanoparticles with bimodal pore size distributions by a two step depressurization solid-state supercritical CO(2) (scCO(2) ) foaming process. Results show that the pore structure features of the scaffolds are strongly affected by the thermal history of the starting polymeric materials and by the depressurization profile. In particular, PCL and PCL-HA nanocomposite scaffolds with bimodal and uniform pore size distributions are fabricated by quenching molten samples in liquid N(2) , solubilizing the scCO(2) at 37 °C and 20 MPa, and further releasing the blowing agent in two steps: (1) from 20 to 10 MPa at a slow depressurization rate, and (2) from 10 MPa to the ambient pressure at a fast depressurization rate. The biocompatibility of the bimodal scaffolds is finally evaluated by the in vitro culture of human mesenchymal stem cells (MSCs), in order to assess their potential for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201100119DOI Listing

Publication Analysis

Top Keywords

pcl pcl-ha
8
pcl-ha nanocomposite
8
nanocomposite scaffolds
8
step depressurization
8
depressurization solid-state
8
solid-state supercritical
8
supercritical co2
8
pore size
8
size distributions
8
depressurization rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!