Putrescine is taken up by confluent pig kidney (LLC-PK1) cells at roughly equal rates over both Na(+)-dependent and Na(+)-independent pathways. The former is sensitive to 1 mM amiloride, but the latter is not. Uptake rates are similar at both the apical and basolateral surfaces. The principal fate of the putrescine is oxidative deamination, yielding a product that appears to be either gamma-aminobutyraldehyde or delta 1-pyrroline. Most of the remainder is converted to products tentatively identified as spermidine, spermine, or another unidentified product; these products as well as putrescine itself are lost from the cell at either surface. Changing the extracellular pH in the range of 6.8-8.0 has no affect on putrescine uptake. Cells acidified to intracellular pH 6.8 show a reduced capacity to incorporate radioactivity, an effect that may be due to inhibition of diamine oxidase. Depletion of ATP stores by treating cells with 2-deoxy-D-glucose and NaN3 does not reduce putrescine uptake, suggesting that the mechanism is not a primary active transporter. The Na(+)-dependent component of uptake is inhibited by 5-50 microM Hg2+ in a dose-dependent manner. p-Chloromercuribenzene sulfonic acid (p-CMBS) at high concentrations (500-1,000 microM) does not affect Na(+)-independent uptake but in the presence of Na+ depresses total uptake more than Na+ depletion alone, suggesting that Na+ enhances the binding of p-CMBS to both transporters. Spermidine and spermine compete with putrescine for uptake, but a variety of other organic bases and amino acids do not, indicating that polyamines are transported by mechanisms distinct from the transporters for those other compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1990.259.1.C84DOI Listing

Publication Analysis

Top Keywords

putrescine uptake
12
uptake
8
putrescine confluent
8
llc-pk1 cells
8
spermidine spermine
8
putrescine
7
uptake metabolism
4
metabolism putrescine
4
confluent llc-pk1
4
cells
4

Similar Publications

Green microalga conserves substrate uptake pattern but changes their metabolic uses across trophic transition.

Front Microbiol

November 2024

Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

The terrestrial green alga is an emerging model species with potential applications including production of triacylglycerol or astaxanthin. How interacts with the diverse substrates during trophic transitions is unknown. To characterize its substrate utilization and secretion dynamics, we cultivated the alga in a soil-based defined medium in transition between conditions with and without glucose supplementation.

View Article and Find Full Text PDF

Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio.

View Article and Find Full Text PDF

Oligoamines in cellular metabolism carry extremely diverse biological functions (i.e., regulating Ca-influx, neuronal nitric oxide synthase, membrane potential, Na, K-ATPase activity in synaptosomes, etc.

View Article and Find Full Text PDF
Article Synopsis
  • * The PotD-PotABC protein complex is a specific transporter system that helps bacteria take up spermidine, characterized as part of the ATP-binding cassette transporter family.
  • * The study reveals key structural details of the PotD-PotABC transporter, highlighting its different conformations and specific residues that regulate the uptake of spermidine, enhancing our understanding of how this process occurs in bacteria.
View Article and Find Full Text PDF

This research was conducted to investigate the efficacy of putrescine (PUT) treatment (0, 1, 2, and 4 mM) on improving morphophysiological and biochemical characteristics of Zinnia elegans "State Fair" flowers under salt stress (0, 50, and 100 mM NaCl). The experiment was designed in a factorial setting under completely randomized design with 4 replications. The results showed that by increasing the salt stress intensity, the stress index (SSI) increased while morphological traits such as plant height decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!