AMP-activated protein kinase (AMPK) is a sensor and regulator of cellular energy metabolism potentially implicated in a broad range of conditions, including obesity and Alzheimer's disease. Its role in the control of key metabolic enzymes makes this kinase a central player in glucose and lipid homeostasis. Recently, by screening a library of synthetic small molecules selected for their structural similarity with the natural polyphenol resveratrol, we identified RSVA314 and RSVA405 as potent indirect activators of AMPK (half-maximal effective concentration [EC₅₀] = 1 μmol/L in cell-based assays). Here we show that RSVA314 and RSVA405 can significantly activate AMPK and inhibit acetyl-CoA carboxylase (ACC), one target of AMPK and a key regulator of fatty acid biogenesis, in nondifferentiated and proliferating 3T3-L1 adipocytes. We found that RSVA314 and RSVA405 treatments inhibited 3T3-L1 adipocyte differentiation by interfering with mitotic clonal expansion during preadipocyte proliferation (half-maximal inhibitory concentration [IC₅₀] = 0.5 μmol/L). RSVA314 and RSVA405 prevented the adipogenesis-dependent transcriptional changes of multiple gene products involved in the adipogenic process, including peroxisome proliferator-activated receptor (PPAR)-γ, CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase, fatty acid binding protein 4 (aP2), RANTES or resistin. Furthermore, orally administered RSVA405 at 20 and 100 mg/kg/d significantly reduced the body weight gain of mice fed a high-fat diet. This work shows that the novel small-molecule activators of AMPK (RSVA314 and RSVA405) are potent inhibitors of adipogenesis and thus may have therapeutic potential against obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188863 | PMC |
http://dx.doi.org/10.2119/molmed.2011.00163 | DOI Listing |
J Surg Res
February 2015
Elmezzi Graduate School of Molecular Medicine, Manhasset, New York; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York; Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, New York. Electronic address:
Background: Renal ischemia-reperfusion (I/R) is a severe clinical complication with no specific treatment. Resveratrol has been shown as a promising experimental agent in renal I/R due to its effect on cellular energy metabolism, oxidative stress, and inflammation. Recently, we identified two biologically active resveratrol analogues (RSVAs), RSVA405 and RSVA314.
View Article and Find Full Text PDFProg Neurobiol
January 2014
Department of Clinical and Experimental Medicine (IKE), Integrative Regenerative Medicine Center (IGEN), Division of Cell Biology, Linkoping University, Linkoping, Sweden. Electronic address:
Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome.
View Article and Find Full Text PDFFEBS J
October 2012
Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
Signal transducer and activator of transcription 3 (STAT3) is a key mediator of the inflammatory response of macrophages and other immune cell types. The naturally occurring polyphenol resveratrol is associated with anti-proliferative and anti-inflammatory properties via mechanisms implicating inhibition of STAT3 signaling. Here, we report that the small-molecule analogs of resveratrol, RSVA314 and RSVA405, are potent inhibitors of STAT3.
View Article and Find Full Text PDFMol Med
March 2012
Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA.
AMP-activated protein kinase (AMPK) is a sensor and regulator of cellular energy metabolism potentially implicated in a broad range of conditions, including obesity and Alzheimer's disease. Its role in the control of key metabolic enzymes makes this kinase a central player in glucose and lipid homeostasis. Recently, by screening a library of synthetic small molecules selected for their structural similarity with the natural polyphenol resveratrol, we identified RSVA314 and RSVA405 as potent indirect activators of AMPK (half-maximal effective concentration [EC₅₀] = 1 μmol/L in cell-based assays).
View Article and Find Full Text PDFFASEB J
January 2011
Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Medical Center, Manhasset, New York, NY 11030, USA.
AMP-activated protein kinase (AMPK) is a metabolic sensor involved in intracellular energy metabolism through the control of several homeostatic mechanisms, which include autophagy and protein degradation. Recently, we reported that AMPK activation by resveratrol promotes autophagy-dependent degradation of the amyloid-β (Aβ) peptides, the core components of the cerebral senile plaques in Alzheimer's disease. To identify more potent enhancers of Aβ degradation, we screened a library of synthetic small molecules selected for their structural similarities with resveratrol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!