Aphids alter host-plant nitrogen isotope fractionation.

Proc Natl Acad Sci U S A

Department of Biology, University of Miami, Coral Gables, FL 33146, USA.

Published: June 2011

Plant sap-feeding insects and blood-feeding parasites are frequently depleted in (15)N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in (15)N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in (15)N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid (15)N depletion and host (15)N enrichment was coupled by isotopic mass balance and determined that aphid (15)N depletion and host (15)N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ(15)N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121841PMC
http://dx.doi.org/10.1073/pnas.1007065108DOI Listing

Publication Analysis

Top Keywords

host nitrogen
16
15n relative
12
nitrogen stable-isotope
12
colonized plants
12
nitrate reductase
12
reductase activity
12
nitrogen
9
depleted 15n
8
host
8
relative hosts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!