The reduction in human motoneurone responsiveness during muscle fatigue is not prevented by increased muscle spindle discharge.

J Physiol

Neuroscience Research Australia (formerly Prince of Wales Medical Research Institute), University of New South Wales, Barker Street, Randwick, New South Wales, Australia 2031.

Published: August 2011

Motoneurone excitability is rapidly and profoundly reduced during a sustained maximal voluntary contraction (MVC) when tested in the transient silent period which follows transcranial magnetic stimulation (TMS) of the motor cortex. One possible cause of this reduction in excitability is a fatigue-induced withdrawal of excitatory input to motoneurones from muscle spindle afferents. We aimed to test if muscle spindle input produced by tendon vibration would ameliorate suppression of the cervicomedullary motor-evoked potential (CMEP) in the silent period during a sustained MVC. Seven subjects performed a 2 min MVC of the elbow flexors. Stimulation of the corticospinal tract at the level of the mastoids was preceded 100 ms earlier by TMS. These stimulus pairs were delivered every 10 s during the 2 min MVC. Stimulus pairs at 30, 50, 70, 90 and 110 s were delivered while vibration (-80 Hz) was applied to the distal tendon of biceps. On a separate day, the protocol was repeated with both stimuli delivered to the motor cortex. The CMEP in the silent period decreased rapidly with fatigue (to -9% of control) and was not affected by tendon vibration (P = 0.766). The motor-evoked potential in the silent period also declined rapidly (to -5% of control) and was similarly unaffected by tendon vibration (P = 0.075). These data suggest motoneurone disfacilitation due to a fatigue-related decrease of muscle spindle discharge does not contribute significantly to the profound suppression of motoneurone excitability during the silent period. Therefore, a change to intrinsic motoneurone properties caused by repetitive discharge is most probably responsible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171882PMC
http://dx.doi.org/10.1113/jphysiol.2011.210252DOI Listing

Publication Analysis

Top Keywords

silent period
20
muscle spindle
16
tendon vibration
12
spindle discharge
8
motoneurone excitability
8
motor cortex
8
motor-evoked potential
8
cmep silent
8
min mvc
8
stimulus pairs
8

Similar Publications

It has been twenty-three years since China acceded to the WTO. Since then, China has participated in high-profile disputes through the WTO's DSM. During this period, China has evolved from being a silent observer to a sophisticated participant in the DSM.

View Article and Find Full Text PDF

Background: Cardiovascular diseases are associated with higher cancer risk. However, their relationship with metastatic cancer, the primary determinant of cancer prognosis, has not been studied.

Objectives: This study aimed to determine the association between atherosclerotic cardiovascular disease and the presence of metastasis at the time of cancer diagnosis.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing central nervous system disease most commonly associated with aquaporin-4 antibodies (AQP4-Ab) and Myelin oligodendrocyte glycoprotein (MOG) antibodies. These demyelinating disorders influence cortical excitability, which has been studied using advanced imaging techniques and transcranial magnetic stimulation (TMS) in our study.

Methods: This is a prospective study of 30 subjects.

View Article and Find Full Text PDF

Exploring DiPP (Diisopentyl Phthalate) Neurotoxicity and the Detoxification Process in Zebrafish Larvae - A Silent Contaminant?

Environ Res

January 2025

School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM). Electronic address:

Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) modulates brain oscillations and corticomotor plasticity. We examined the effects of four tACS frequencies (20 Hz, 40 Hz, 60 Hz, and 80 Hz) on motor cortex (M1) excitability and motor performance. In a randomised crossover design, 12 adults received 20-minute tACS sessions, with Sham as control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!