Allozyme diversity within and divergence among species ofTolpis(Asteraceae-Lactuceae) in the Canary Islands: systematic, evolutionary, and biogeographical implications.

Am J Bot

Department of Ecology and Evolutionary Biology, and The Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045 USA;

Published: April 2006

Plants endemic to oceanic islands represent some of the most unusual and rare taxa in the world. Enzyme electrophoresis was used to assess genetic diversity within and divergence among all endemic species of a small genus of plants on the Canary Islands. Our results show that the genus Tolpis is similar to many other island groups in having generally low allozyme divergence among species, with the highest divergence found among four groups of endemics. The two rare and highly localized species T. glabrescens and T. crassiuscula are each divergent from all other species in the Canaries. Tolpis coronopifolia is also divergent at allozyme loci; this is the only endemic species that is a self-compatible annual (or weak biennial). A large, morphologically variable species complex consisting of T. laciniata and T. lagopoda together with several named and unnamed morphological variants shows low allozyme divergence among its elements. The evolution of polyploidy from diploid ancestors in situ in oceanic archipelagos is uncommon, but the tetraploid T. glabrescens is an exception. Allozyme data do not implicate any extant diploid Tolpis species as parents of the polyploid. It is possible that T. glabrescens originated early in the evolution of Tolpis in the Canary Islands and that its parents are now extinct. The nonendemic T. barbata shows no greater divergence from the Canary Island endemics than some endemics exhibit among themselves. Both changes in allele frequencies and unique alleles are responsible for genetic divergence among species of Tolpis.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.93.4.656DOI Listing

Publication Analysis

Top Keywords

divergence species
12
canary islands
12
species
9
diversity divergence
8
endemic species
8
low allozyme
8
allozyme divergence
8
divergence
7
allozyme
5
tolpis
5

Similar Publications

Xylem Hydraulics of Two Temperate Tree Species with Contrasting Growth Rates.

Plants (Basel)

December 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Hydraulic functionality is crucial for tree productivity and stress tolerance. According to the theory of the fast-slow economics spectrum, the adaptive strategies of different tree species diverge along a spectrum defined by coordination and trade-offs of a suite of functional traits. The fast- and slow-growing species are expected to differ in hydraulic efficiency and safety; however, there is still a lack of investigation on the mechanistic association between tree growth rate and tree hydraulic functionality.

View Article and Find Full Text PDF

A survey of the moss flora of the southernmost part of the Russian Primorsky Territory yielded several intriguing taxa, whose identity is assessed herein based on an integrative morpho-molecular approach. was previously known in inland Asia only from the Sino-Himalayan region and the new locality is distant from the earlier known ones to ca. 3000 km.

View Article and Find Full Text PDF

The relationships between environmental characteristics and species richness in the grasslands of the Colombian Orinoquia are presented and analyzed using an ordinal logistic regression model. Ordinal and scale covariates were included, and their bivariate significance was assessed using Spearman's rho and Kendall's Tau-b. The covariates that showed statistical significance with the weighted richness thresholds (WRT) and defined the model were the soil depth and the soil moisture regime, both of which had positive correlations.

View Article and Find Full Text PDF

A Comprehensive Analysis In Silico of Genes in Maize Revealed Their Potential Role in Response to Abiotic Stress.

Plants (Basel)

December 2024

Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.

β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.

View Article and Find Full Text PDF

Two strains, M1 and H32 with nitrogen-fixing ability, were isolated from the rhizospheres of different plants. Genome sequence analysis showed that a (trogen ixation) gene cluster composed of nine genes () was conserved in the two strains. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strains M1 and H32 are members of the genus .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!