Growth and nutrient responses of Eloecharis cellulosa (Cyperaceae) to phosphate level and redox intensity.

Am J Bot

Wetland Biogeochemistry Institute, Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 USA;

Published: September 2005

Phosphorus (P) availability limits plant growth in many ecosystems. The ability of plants to explore for soil P is often impaired by nonresource stressors. Understanding the effects of these stressors on P acquisition in oligotrophic environments is critical in predicting species dominance. Growth and nutrient responses of Eleocharis cellulosa to redox intensity and phosphate level were evaluated under three redox potentials (Eh) and three phosphate (PO(4)) levels (P). Although low Eh (-150 mV) decreased root length at low P, Eh did not affect shoot height, relative growth rate (RGR), shoot elongation, photosynthesis, or biomass of E. cellulosa. Low PO(4) (10 μg P · L(-1)) strongly inhibited growth. Shoot height, RGR, elongation, photosynthesis, and biomass were lower at 10 μg P · L(-1) than at 80 or 500 μg P · L(-1). None of the growth variables, except the ratio of root-supported biomass to root biomass, significantly differed between the 80 and 500 μg P · L(-1) treatments. At low P, plants allocated relatively more biomass to roots than to shoots, compared to the medium and high P levels. Eleocharis cellulosa is well adapted to flooded conditions that lower soil Eh, and elevated PO(4) levels further promote its growth potential.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.92.9.1457DOI Listing

Publication Analysis

Top Keywords

μg p · l-1
16
growth nutrient
8
nutrient responses
8
phosphate level
8
redox intensity
8
eleocharis cellulosa
8
po4 levels
8
shoot height
8
elongation photosynthesis
8
photosynthesis biomass
8

Similar Publications

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Biomedical Application Prospects of Gadolinium Oxide Nanoparticles for Regenerative Medicine.

Pharmaceutics

December 2024

Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.

Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.

Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.

View Article and Find Full Text PDF

Development of Roselle ( L.) Transcriptome-Based Simple Sequence Repeat Markers and Their Application in Roselle.

Plants (Basel)

December 2024

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Roselle ( L.) simple sequence repeat (SSR) markers were developed using RNA sequencing technology, providing a foundation for genetic analysis and the identification of roselle varieties. In this study, 10 785 unigenes containing 12 994 SSR loci with an average of one SSR locus per 6.

View Article and Find Full Text PDF

Histone deacetylases synergistically regulate juvenile hormone signaling in the yellow fever mosquito, Aedes aegypti.

Insect Biochem Mol Biol

December 2024

Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:

Article Synopsis
  • Effective control of Aedes aegypti mosquitoes is vital to reduce diseases like dengue and zika, focusing on blocking their transition from larvae to adults.
  • Research shows that histone deacetylases (HDACs) play a role in regulating juvenile hormone (JH) signaling and metamorphosis, particularly in other insects, but their function in Aedes aegypti is not well understood.
  • Knocking down specific HDAC genes increased the expression of a key gene (Kr-h1) involved in larval development, with each HDAC affecting different biological processes in mosquito growth, leading to varied developmental issues.
View Article and Find Full Text PDF

Glycosylation patterns represent an important signature of cancer cells that can be decoded by glycan-binding proteins, i.e., lectins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!