Light propagation and distribution inside leaves have been recognized as important processes influencing photosynthesis. Monochromatic light absorption across the mesophyll was measured using chlorophyll fluorescence generated from illumination of the cut edge (epi-illumination), as well as the adaxial or abaxial surfaces of the leaf. Species were selected that had basic leaf types: laminar leaf with adaxial palisade layer (Rhododendron catawbiense), needle with palisade (Abies fraseri), and needle without palisade (Picea rubens). Fluorescence was more evenly distributed across the mesophyll for adaxially illuminated leaves with a palisade cell layer, as well as for the needles (cylindrical) without palisade, when compared to fluorescence generated by abaxial illumination. Moreover, fluorescence from green light illumination remained high across the mesophyll of adaxially illuminated R. catawbiense, indicating a possible influence of mesophyll structure on internal light distribution beyond that of chlorophyll levels. These data support the idea that light propagation within the mesophyll is associated with asymmetric mesophyll structure, in particular the presence of palisade cell layers. In addition, we propose that the evolution of a more cylindrical leaf form, such as found in conifer species, may be a structural solution to excessive sunlight that replaces the highly differentiated mesophyll found in most laminar-leaved species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3732/ajb.92.9.1425 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
The Metropolitan Area of São Paulo (MASP) in southern Brazil is impacted by high ozone levels posing significant threats to its urban forests and the Atlantic Forest remnants. These green areas, covering 540 km and constituting 30% of MASP's territory, necessitate an urgent assessment of air pollution impacts on their flora. Our study investigates the effects of atmospheric pollution on the morphoanatomical and physiological responses of four native tree species (Alchornea sidifolia, Casearia sylvestris, Guarea macrophylla, and Machaerium nyctitans) across two Atlantic Forest remnants in MASP.
View Article and Find Full Text PDFChem Biodivers
January 2025
Sofia University, Faculty of Biology, Plant Physiology, Dragan Tsankov 8, Sofia, BULGARIA.
Plantago atrata Hoppe is a high-altitude mountain plant exposed to harsh environmental factors. This study aims to elucidate the ecological, phytochemical and pharmacological characteristics of this lesser-known plantain. Despite nutrient-poor peat soil, the leaves of P.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Agricultural College, Anhui Agricultural University, 230036, Hefei, China; Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP), 210095, Nanjing, China. Electronic address:
Nitric oxide (NO) positively contributes to maintaining a high photosynthetic rate in waterlogged-wheat plants by maintaining high stomatal conductance (g), mesophyll conductance (g), and electron transport rates in PSII (J). However, the molecular mechanisms underlying the synergistic regulation of photosynthetic characteristics during wheat waterlogging remain unclear. Pot experiments were conducted with two cultivars: Yangmai15 (YM15: high waterlogging-tolerance capacity) and Yangmai24 (YM24: conventional waterlogging-tolerance capacity).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China.
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!