We compared water relations and adaptations to drought stress in native and invasive exotic dandelions, Taraxacum ceratophorum and T. officinale. Photosynthesis (A), transpiration (E), and water use efficiency (WUE; carbon gained/water lost) were measured for the two species under extreme drought in the alpine tundra of Colorado, USA. We also subjected both species and F(1) hybrids to a dry-down experiment to determine how relative physiological performance varied with water availability. Photosynthesis and transpiration in the field were low and did not differ between Taraxacum congeners; however, native T. ceratophorum had higher WUE than T. officinale. After 6 days of greenhouse drought, photosynthesis and transpiration were reduced in T. officinale compared to T. ceratophorum. Taraxacum ceratophorum maintained high WUE under control and drought treatments. Conversely, WUE in T. officinale was highly plastic between watered (low WUE) and dry-down (high WUE) treatments. Hybrids did not exhibit heterosis; instead, they were similar to T. officinale in A and E and intermediate to the parental species in WUE. Overall, results suggest that native dandelions are more drought tolerant than invasive congeners or their hybrids, but have less plasticity in WUE. Arid habitats and occasional drought in mesic sites may provide native dandelions with refugia from negative interactions with invasives.

Download full-text PDF

Source
http://dx.doi.org/10.3732/ajb.92.8.1311DOI Listing

Publication Analysis

Top Keywords

taraxacum ceratophorum
12
photosynthesis transpiration
12
wue
8
wue officinale
8
high wue
8
native dandelions
8
drought
7
officinale
6
ceratophorum
5
drought tolerance
4

Similar Publications

Under the mentor effect, compatible heterospecific pollen transfer induces self-pollen germination in otherwise self-incompatible plants. The mentor effect could be considered a novel mode of reproductive interference if it negatively impacts fitness. Yet to date, this phenomenon has predominately been investigated under experimental conditions rather than in situ.

View Article and Find Full Text PDF

Premise: Spiny pollen has evolved independently in multiple entomophilous lineages. Sexual selection may act on exine traits that facilitate male mating success by influencing the transfer of pollen from the anther to the body of the pollinator, while natural selection acts to increase pollen survival. We postulated that relative to sexual congeners, apomictic dandelions undergo relaxed selection on traits associated with male mating success.

View Article and Find Full Text PDF

Rising atmospheric carbon dioxide concentration ([CO]) may modulate the functioning of mycorrhizal associations by altering the relative degree of nutrient and carbohydrate limitations in plants. To test this, we grew Taraxacum ceratophorum and Taraxacum officinale (native and exotic dandelions) with and without mycorrhizal fungi across a broad [CO] gradient (180-1,000 µL L). Differential plant growth rates and vegetative plasticity were hypothesized to drive species-specific responses to [CO] and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Fungal diversity and composition are still relatively unknown in many ecosystems; however, host identity and environmental conditions are hypothesized to influence fungal community assembly. To test these hypotheses, we characterized the richness, diversity, and composition of rhizosphere fungi colonizing three alpine plant species, Taraxacum ceratophorum, Taraxacum officinale, and Polemonium viscosum. Roots were collected from open meadow and willow understory habitats at treeline on Pennsylvania Mountain, Colorado, USA.

View Article and Find Full Text PDF

Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!