The yeast Saccharomyces cerevisiae, besides being an eukaryotic cell model, plays a fundamental role in the production of fermented foods. In the winemaking industry, yeast cell walls may be involved in numerous processes and contribute substantially to the final chemical and sensorial profiles of wines. Nonetheless, apart from mannoproteins, little is known on the protein components of the yeast cell wall and their changes during the fermentation of must into wine. In this work, we performed a dynamic analysis of the cell surface proteome (surfome) of an autochthonous wine yeast strain (previously selected as a wine fermentation starter) by shaving intact cells with trypsin and identifying tryptic peptides by means of nLC-ESI-LIT-MS/MS. Out of the 42 identified proteins, 16 and 14 were found to be specifically expressed in wine yeast surfome at the beginning and at the end of fermentation, respectively. The molecular functions of these specifically expressed proteins might help in explaining their roles in the cell wall as a response to the alcoholic fermentation-related stresses. Additionally, we provided the identification of 20 new potential cell wall related proteins. Globally, our results might provide new useful data for the selection and characterization of yeast strains to be used in the winemaking industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2011.04.009 | DOI Listing |
J Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
Tracheary elements (TEs) are vital in the transport of various substances and contribute to plant growth. The differentiation of TEs is complex and regulated by a variety of microRNAs (miRNAs). However, the dynamic changes in miRNAs during each stage of TE differentiation remain unclear, and the miRNA regulatory network is not yet complete.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.
View Article and Find Full Text PDFL., a medicinal plant renowned for its pharmaceutical alkaloids, has captivated scientific interest due to its rich secondary metabolite profile. This study explores a novel approach to manipulating alkaloid biosynthesis pathways by integrating virus-induced gene silencing (VIGS) with macerozyme enzyme pretreatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!