Two reversed-phase liquid chromatographic (RP-LC) methods have been developed for the determination of sitagliptin phosphate monohydrate (STG). The first method comprised the determination of STG alone in bulk and plasma; and in its pharmaceutical preparation. This method was based on isocratic elution of STG using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (7.8)-acetonitrile (70:30, v/v) at a flow rate of 1 mL min(-1) with flourometric detection. The flourometric detector was operated at 267 nm for excitation and 575 nm for emission. In the second method, the simultaneous determination of STG and metformin (MET) in the presence of sitagliptin alkaline degradation product (SDP) has been developed. In this method, the ternary mixture of STG, MET and SDP was separated using a mobile phase consisting of potassium dihydrogen phosphate buffer pH (4.6)-acetonitrile-methanol (30:50:20, v/v/v) at a flow rate of 1 mL min(-1) with UV detection at 220 nm. Chromatographic separation in the two methods was achieved on a Symmetry(®) Waters C18 column (150 mm×4.6 mm, 5 μm). Linearity, accuracy and precision were found to be acceptable over the concentration ranges of 0.25-200 μg mL(-1) for STG with the first method and 5-160 μg mL(-1), 25-800 μg mL(-1) for STG and MET, respectively with the second method. The optimized methods were validated and proved to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2011.04.051 | DOI Listing |
J Mater Chem B
March 2023
Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology College of Material Science and Engineering, and Collaborative Research Center of Molecular Engineering for Theranostics, Hunan University, Changsha, 410082, China.
In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of HO. L-Ascorbic acid-2--α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs.
View Article and Find Full Text PDFMikrochim Acta
June 2021
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
A sensitive fluorescence strategy was constructed for the detection of α-glucosidase activity based on AgInZnS QDs. The AIZS QDs which were synthesized by hydrothermal method have a fluorescence emission wavelength of 554 nm. Ce was able to oxidize p-phenylenediamine (PPD) to generate oxPPD, which can quench the fluorescence of AIZS QDs through dynamic quenching.
View Article and Find Full Text PDFAnalyst
December 2019
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
α-Glucosidase and its inhibitors play a key role in diagnosis and treatment of diabetes. In the present work, we established a facile, sensitive and selective fluorescence method based on silicon quantum dots (SiQDs) and MnO nanosheets for the determination of α-glucosidase and one of its inhibitors acarbose. The fluorescence of SiQDs was greatly quenched by MnO nanosheets due to the inner filter effect.
View Article and Find Full Text PDFAnal Chim Acta
October 2019
School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, PR China. Electronic address:
In recent years, α-glucosidase (α-Glu) inhibitor has been widely used in clinic for diabetic and HIV therapy. Although different systems have been constructed for sensitive and selective detection of α-Glu and screening its inhibitor, the method based on ratiometric fluorescence for α-glucosidase inhibitor screening remains poorly investigated. Herein, we constructed a new MnO nanosheet (NS)-based ratiometric fluorescent sensor for α-glucosidase activity assay and its inhibitor screening.
View Article and Find Full Text PDFBr J Clin Pharmacol
November 2017
Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, Tokyo, Japan.
Aim: α -Acid glycoprotein (AAG), which is a major binding protein of docetaxel, is considered to be a determinant for docetaxel pharmacokinetics. However, there are no reports about the impact of serum AAG on pharmacokinetics and pharmacodynamics in elderly patients treated with docetaxel. The aim of this prospective study was to elucidate the effects of advanced age and serum AAG on docetaxel unbound exposure and neutropenia, dose-limiting toxicity, in cancer patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!