Background: H6N1 low pathogenic avian influenza virus (LPAIV) are frequently isolated in Taiwan and lead to significant economic losses, either directly or indirectly through association with other infectious diseases. This study investigates immune responses to three different vaccines following a H6N1 challenge in different local breeds.
Methods: Experimental animals were sampled from six local chicken breeds maintained at the National Chung-Hsing University, namely Hsin-Yi, Ju-Chi, Hua-Tung (Taiwan), Quemoy (Quemoy Island), Shek-Ki (China), Nagoya (Japan) and a specific pathogen free (SPF) White Leghorn line. A total number of 338 chickens have been distributed between a control and a challenge group, H6N1 challenge was performed at 7 weeks of age; vaccination against Newcastle Disease (ND), Infectious Bursal Disease (IBD) and Infectious Bronchitis (IB) was performed at 11 weeks. The anti-H6N1 LPAIV antibody titers were measured by ELISA at days 0, 7, 14 and 21 after challenge, and the anti-ND, anti-IBD and anti-IB antibody titers were measured by inhibition of hemagglutination test and ELISA at days 0, 14, 28 after vaccination.
Results: There was no effect of the H6N1 LPAIV challenge at 7 weeks of age on the subsequent responses to ND and IBD vaccine at 11 weeks of age, but, surprisingly, the H6N1 LPAIV challenge significantly affected antibody levels to IB vaccine in some breeds, since IB0 and IB14 antibody titers were lower in the challenge groups. However, there was no significant difference in IB28 antibody titers among the experimental groups.
Conclusions: Local breeds have different immune response to H6N1 LPAIV challenge and subsequent vaccines. Differences dealt mainly with kinetics of response and with peak values. Quemoy exhibited higher antibody levels to H6N1, ND and IBD. The negative effect of the H6N1 LPAIV challenge on IB vaccine response may be related to the fact that both viruses target the lung tissues, and the type of local immune response induced by LPAIV challenge may not be favourable for birds to make optimum IB-specific antibody response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108229 | PMC |
http://dx.doi.org/10.1186/1753-6561-5-S4-S33 | DOI Listing |
Poult Sci
October 2024
Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
Avian chlamydiosis is a serious avian infection that carries a significant zoonotic danger to the poultry industry. The respiratory co-infections caused by the low pathogenic avian influenza virus H9N2 (LPAIV H9N2) also cause significant financial losses in the poultry industry. The purpose of this study was to examine the pathogenicity of Chlamydophila psittaci, and LPAIV H9N2 individually and in combination in broiler chickens, as well as to determine whether or not aqueous neem (Azadirachta indica) leaf extract is effective against infections caused by these pathogens.
View Article and Find Full Text PDFVirus Res
November 2024
Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems 17493, Germany. Electronic address:
Avian influenza viruses (AIV) pose a continuous challenge to global health and economy. While countermeasures exist to control outbreaks in poultry, the persistent circulation of AIV in wild aquatic and shorebirds presents a significant challenge to effective disease prevention efforts. PB1-F2 is a non-structural protein expressed from a second open reading frame (+1) of the polymerase basic 1 (PB1) segment.
View Article and Find Full Text PDFACS Infect Dis
August 2024
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India.
Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention.
View Article and Find Full Text PDFVaccine
May 2024
Service of Avian Virology and Immunology, Sciensano, 1180 Brussels, Belgium.
The application of recombinant herpesvirus of turkey, expressing the H9 hemagglutinin gene from low pathogenic avian influenza virus (LPAIV) H9N2 and the avian orthoavulavirus-1 (AOAV-1) (commonly known as Newcastle Disease virus (NDV)) fusion protein (F) as an rHVT-H9-F vaccine, is an alternative to currently used classical vaccines. This study investigated H9- and ND-specific humoral and mucosal responses, H9-specific cell-mediated immunity, and protection conferred by the rHVT-H9-F vaccine in specific pathogen-free (SPF) chickens. Vaccination elicited systemic NDV F- and AIV H9-specific antibody response but also local antibodies in eye wash fluid and oropharyngeal swabs.
View Article and Find Full Text PDFAvian Pathol
October 2023
Central Laboratory for Evaluation of Veterinary Biologics, Cairo, Egypt.
Avian influenza H9N2 is one of the most commonly circulating viruses in numerous Egyptian poultry farms. The Asian lineage H9N2 exhibits an immunosuppressive effect, and its pathogenicity is amplified when it co-infects with other pathogens, especially with the immunosuppressive infectious bursal disease virus (IBDV), resulting in increased mortality rates. Both vaccines and field infection can exacerbate the pathogenicity of H9N2, particularly in the bursa of Fabricius, causing more significant lymphoid depletion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!