The Galápagos are considered a model oceanic archipelago, with unique flora and fauna currently threatened by alien invasive species. Seed dispersal is an important ecosystem function with consequences for plant population dynamics and vegetation structure. Hence, understanding the seed dispersal abilities of the assemblages of frugivores will inform scientists and managers of the dynamics of plant invasions and improve management planning. Here we provide the first comprehensive review of published information on frugivory and animal seed dispersal in the Galápagos. We collected data from a variety of sources, including notes of the first naturalist expeditions, gray literature available only in Galápagos collections, and peer-reviewed journal articles. Plant-animal frugivorous interactions were retrieved from 43 studies and compiled into an interaction matrix describing 366 unique interactions. Most studies focused on fruit consumption as a driving force for natural selection, but seed fate was seldom considered. Although most (71%) of the interactions involved native plants, more than one-quarter (28%) involved introduced species. Interactions involving birds are considerably more common than those of reptiles and mammals, probably reflecting a research bias towards birds. Despite the historical importance of the archipelago as the laboratory for evolutionary and ecological research, understanding of its seed dispersal systems is limited. We end the review by suggesting 3 priority areas of research on frugivory and seed dispersal in the Galápagos: (i) target research to close knowledge gaps; (ii) the use of a network approach to frame seed dispersal at the community level; and (iii) evaluation of the effect of seed dispersal as a selective pressure acting upon plants and frugivores. Finally, the output of this research has to be properly delivered to the Galápagos National Park Services to help increase management effectiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-4877.2011.00236.x | DOI Listing |
Genetics
January 2025
Institute of Forest Sciences (ICIFOR-INIA), CSIC, Ctra. De la Coruña km 7.5, 28040 Madrid, Spain.
We present a new hierarchical Bayesian method using multilocus genotypes to estimate recent seed and pollen migration rates in a spatially explicit framework that incorporates distance effects separately for each type of dispersal. The method additionally estimates population allelic frequencies, population divergence values, individual inbreeding coefficients, individual maternal and paternal ancestries, and allelic dropout rates. We conduct a numerical simulation analysis that indicates that the method can provide reliable estimates of seed and pollen migration rates and allow accurate inference of spatial effects on migration, at affordable sample sizes (25-50 individuals/population) when population genetic divergence is not low (FST≥0.
View Article and Find Full Text PDFOecologia
January 2025
Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan.
Vertical seed dispersal towards higher or lower altitudes is an important process for plants' adaptation to climate change. Although many plants depend on animals for seed dispersal, studies on vertical seed dispersal by animals, determined by complex animal behaviours, are scarce. Previous studies hypothesised that animals inhabiting temperate regions disperse seeds uphill in spring/summer and downhill in autumn/winter due to their seasonal movement following the altitudinal gradients in food phenology.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile.
Large-scale reforestation is promoted as an important strategy to mitigate climate change and biodiversity loss. A persistent challenge for efforts to restore ecosystems at scale is how to accelerate ecological processes, particularly natural regeneration. Yet, despite being recognized as an important barrier to the recovery of diverse plant communities in tropical agricultural landscapes, the impacts of dispersal limitation on natural regeneration in secondary forests-and especially how this changes as these forests grow older-are still poorly studied.
View Article and Find Full Text PDFAnn Bot
January 2025
Unit of Ecological Genetics, Institute of Forest Biodiversity and Nature Conservation, Austrian Research Centre for Forests (BFW), Seckendorff-Gudent-Weg 8, Vienna, Vienna.
Background And Aims: Torminalis glaberrima (Gand.) Sennikov & Kurtto is a European tree species currently underutilized in forestry, valued for its high-quality wood and contribution to ecosystem stability. Despite a projected range expansion as climate change progresses, current population fragmentation levels may inhibit the species' ability to migrate and stabilize fragile forest ecosystems.
View Article and Find Full Text PDFEcol Evol
January 2025
Centro de Investigaciones sobre Desertificación CIDE CSIC-UVEG-GV Valencia Spain.
The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear () in five plots (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!