Background: Alcohol is a common cause of hepatic liver injury with steatosis and fibrosis. Cannabinoid receptors (CB) modulate steatosis, inflammation and fibrogenesis. To investigate the differences between CB(1) and CB(2) in the hepatic response to chronic alcohol intake, we examined CB knockout mice (CB(1)(-/-), CB(2)(-/-)).

Methods: Eight- to 10-week-old CB(1)(-/-), CB(2)(-/-) and wild-type mice received 16% ethanol for 35 weeks. Animals receiving water served as controls. We analysed triglyceride and hydroxyproline contents in liver homogenates. mRNA levels of CBs, pro-inflammatory cytokines [tumour necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, interleukin (IL)-1β] and profibrotic factors [α-smooth muscle actin (α-SMA), procollagen-Ia, platelet-derived growth factor β receptor (PDGFβ-R)] were analysed by reverse transcription-polymerase chain reaction (RT-PCR). Histology (hemalaun and eosin, oil-red O, CD3, CD45R, CD45, F4/80, Sirius red) characterized hepatic steatosis, inflammation and fibrosis. Activation of lipogenic pathways, activation and proliferation of hepatic stellate cell (HSC) were assessed by western blot [fatty acid synthase (FAS), sterol regulatory element binding protein 1c (SREBP-1c), α-SMA, proliferating cell nuclear antigen (PCNA), cathepsin D].

Results: Hepatic mRNA levels of the respective CBs were increased in wild-type animals and in CB(1)(-/-) mice after ethanol intake. Ethanol intake in CB(2)(-/-) mice induced much higher steatosis (SREBP-1c mediated) and inflammation (B-cell predominant infiltrates) compared with wild-type animals and CB(1)(-/-) mice. HSC activation and collagen production were increased in all groups after forced ethanol intake, being most pronounced in CB(2)(-/-) mice and least pronounced in CB(1)(-/-) mice.

Discussion: The fact that CB(2) receptor knockout mice exhibited the most pronounced liver damage after ethanol challenge indicates a protective role of CB(2) receptor expression in chronic ethanol intake. By contrast, in CB(1) knockouts, the effect of ethanol was attenuated, suggesting aggravation of fibrogenesis and SREBP-1c-mediated steatosis via CB(1) receptor expression after ethanol intake.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1478-3231.2011.02496.xDOI Listing

Publication Analysis

Top Keywords

ethanol intake
20
cannabinoid receptors
8
injury steatosis
8
mice
8
cb1 receptor
8
steatosis inflammation
8
knockout mice
8
ethanol
8
mrna levels
8
wild-type animals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!