A substantial body of data was reported between 1984 and 2000 demonstrating that the neuropeptide N-acetylaspartylglutamate (NAAG) not only functions as a neurotransmitter but also is the third most prevalent transmitter in the mammalian nervous system behind glutamate and GABA. By 2005, this conclusion was validated further through a series of studies in vivo and in vitro. The primary enzyme responsible for the inactivation of NAAG following its synaptic release had been cloned, characterized and knocked out. Potent inhibitors of this enzyme were developed and their efficacy has been extensively studied in a series of animal models of clinical conditions, including stroke, peripheral neuropathy, traumatic brain injury, inflammatory and neuropathic pain, cocaine addiction, and schizophrenia. Considerable progress also has been made in defining further the mechanism of action of these peptidase inhibitors in elevating synaptic levels of NAAG with the consequent inhibition of transmitter release via the activation of pre-synaptic metabotropic glutamate receptor 3 by this peptide. Very recent discoveries include identification of two different nervous system enzymes that mediate the synthesis of NAAG from N-acetylaspartate and glutamate and the finding that one of these enzymes also mediates the synthesis of a second member of the NAAG family of neuropeptides, N-acetylaspartylglutamylglutamate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137677PMC
http://dx.doi.org/10.1111/j.1471-4159.2011.07338.xDOI Listing

Publication Analysis

Top Keywords

member naag
8
nervous system
8
naag
7
advances understanding
4
understanding peptide
4
peptide neurotransmitter
4
neurotransmitter naag
4
naag appearance
4
appearance member
4
naag neuropeptide
4

Similar Publications

Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound.

View Article and Find Full Text PDF

Introduction: Repeated exposure to methamphetamine (MA) in laboratory rodents induces a sensitization of glutamate release within the corticoaccumbens pathway that drives both the rewarding and reinforcing properties of this highly addictive drug. Such findings argue the potential for pharmaceutical agents inhibiting glutamate release or its postsynaptic actions at glutamate receptors as treatment strategies for MA use disorder. One compound that may accomplish both of these pharmacological actions is the -acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA).

View Article and Find Full Text PDF

Obtaining compounds with large nonlinear-optical (NLO) coefficients and wide band gaps is challenging due to their competitive requirements for chemical bonds. Herein, the first member with mixed cations on the A site in the A-M-Q or A-Ag-M-Q (A = alkali metal; M = Ga, In; Q = S, Se, Te) family, NaAgGaSe (NAGSe), was obtained by a solid-state reaction. Its structure features [GaSe] tetrahedra built three-dimensional {[GaSe]} network, with Na and Na/Ag cations located at the octahedral cavities.

View Article and Find Full Text PDF

Cognitive impairment is a common aspect of multiple sclerosis (MS) for which there are no treatments. Reduced brain -acetylaspartylglutamate (NAAG) levels are linked to impaired cognition in various neurological diseases, including MS. NAAG levels are regulated by glutamate carboxypeptidase II (GCPII), which hydrolyzes the neuropeptide to -acetyl-aspartate and glutamate.

View Article and Find Full Text PDF

Neuroprotective effects of a dendrimer-based glutamate carboxypeptidase inhibitor on superoxide dismutase transgenic mice after neonatal hypoxic-ischemic brain injury.

Neurobiol Dis

January 2021

Departments of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Departments of Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA 94158, USA. Electronic address:

The result of a deprivation of oxygen and glucose to the brain, hypoxic-ischemic encephalopathy (HIE), remains the most common cause of death and disability in human neonates globally and is mediated by glutamate toxicity and inflammation. We have previously shown that the enzyme glutamate carboxypeptidase (GCPII) is overexpressed in activated microglia in the presence of inflammation in fetal/newborn rabbit brain. We assessed the therapeutic utility of a GCPII enzyme inhibitor called 2-(3-Mercaptopropyl) pentanedioic acid (2MPPA) attached to a dendrimer (D-2MPPA), in order to target activated microglia in an experimental neonatal hypoxia-ischemia (HI) model using superoxide dismutase transgenic (SOD) mice that are often more injured after hypoxia-ischemia than wildtype animals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!