MICA*063N has one nucleotide different from MICA*027 at position 184 (C→T) in codon 62 (CAG→TAG), resulting in a premature stop codon in exon 2.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-0039.2011.01692.xDOI Listing

Publication Analysis

Top Keywords

identification novel
4
novel allele
4
allele mica*063n
4
mica*063n chinese
4
chinese lung
4
lung cancer
4
cancer patient
4
patient mica*063n
4
mica*063n nucleotide
4
nucleotide mica*027
4

Similar Publications

Novel Human Activity Recognition (HAR) methodologies, which are built upon learning algorithms and employ ubiquitous sensors, have achieved remarkable precision in the identification of sports activities. Such progress benefits all age groups of humanity, and in the future, AI will be used to address difficult problems in scientific research. A novel approach is introduced in this article to utilize motion sensor data in order to categorize and distinguish various categories of sports activities.

View Article and Find Full Text PDF

Total synthesis and target identification of marine cyclopiane diterpenes.

Nat Commun

December 2024

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Marine cyclopianes are a family of diterpenoid with novel carbon skeleton and diverse biological activities. Herein, we report our synthetic and chemical proteomics studies of cyclopiane diterpenes which culminate in the asymmetric total synthesis of conidiogenones C, K and 12β-hydroxy conidiogenone C, and identification of Immunity-related GTPase family M protein 1 (IRGM1) as a cellular target. Our asymmetric synthesis commences from Wieland-Miescher ketone and features a sequential intramolecular Pauson-Khand reaction and gold-catalyzed Nazarov cyclization to rapidly construct the 6-5-5-5 tetracyclic skeleton.

View Article and Find Full Text PDF

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

Background: Trichophyton indotineae, formerly described as T. mentagrophytes rDNA-ITS genotype VIII, has recently been identified as a novel species within the T. mentagrophytes complex.

View Article and Find Full Text PDF

A comprehensive benchmark study of methods for identifying significantly perturbed subnetworks in cancer.

Brief Bioinform

November 2024

Department of Microbiology and Immunology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, New York, NY 14203, United States.

Network-based methods utilize protein-protein interaction information to identify significantly perturbed subnetworks in cancer and to propose key molecular pathways. Numerous methods have been developed, but to date, a rigorous benchmark analysis to compare the performance of existing approaches is lacking. In this paper, we proposed a novel benchmarking framework using synthetic data and conducted a comprehensive analysis to investigate the ability of existing methods to detect target genes and subnetworks and to control false positives, and how they perform in the presence of topological biases at both gene and subnetwork levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!