Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization.

Anal Chem

The Guelph [Formula: see text] Waterloo Centre for Graduate Work In Chemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

Published: June 1998

Gaseous formaldehyde is sampled by derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) adsorbed onto poly (dimethylsiloxane)/divinylbenzene solid-phase microextraction fibers. The product of the reaction is an oxime which is thermally very stable and insensitive to light. The oxime can be analyzed by gas chromatography with flame ionization detection and other detectors. Loading PFBHA on the fiber is by room-temperature headspace extraction from aqueous solutions of PFBHA. The process of loading and desorption of unreacted PFBHA, and oxime formed, is both highly reproducible and reversible, with more than 200 loading, sampling, and analysis steps possible with one fiber. The standard formaldehyde gas concentrations studied ranged from 15 to 3200 ppbv with sampling times from 10 s to 12 min. Quantification can be achieved via interpolation from calibration curves of area counts as a function of formaldehyde concentration for a fixed sampling time. Sampling for 10 s yields a method detection limit of 40 ppbv and at 300 s the method detection limit is 4.6 ppbv. This is equal to or better than all other conventional grab sampling methods for gaseous formaldehyde employing sampling trains or passive sampling techniques. Alternatively, gaseous formaldehyde can be quantified with an empirically established apparent first-order rate constant (0.0030 ng/(ppbv s) at 25 °C) for the reaction between sorbed PFBHA and gaseous formaldehyde. This first-order rate constant allows for quantitative analyses without a calibration curve, only requiring detector calibration with the oxime. This new method was used for the headspace sampling of air known to contain formaldehyde, as well as other carbonyl compounds, and from various matrixes such as cosmetics and building products.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac9711394DOI Listing

Publication Analysis

Top Keywords

gaseous formaldehyde
16
sampling
9
formaldehyde
8
solid-phase microextraction
8
method detection
8
detection limit
8
limit ppbv
8
first-order rate
8
rate constant
8
pfbha
5

Similar Publications

Enhancing visible light degradation of gaseous formaldehyde with CuO/OVs-TiO photocatalyst loaded wallpaper: Preparation, efficacy and mechanism.

Chemosphere

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.

View Article and Find Full Text PDF

Hybrid Enzyme-Electrocatalyst Cascade Modified Gas-Diffusion Electrodes for Methanol Formation from Carbon Dioxide.

Angew Chem Int Ed Engl

December 2024

Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.

We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.

View Article and Find Full Text PDF

Promoting effect of potassium over Pd/SiO catalyst for ambient formaldehyde oxidation.

J Environ Sci (China)

June 2025

Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Article Synopsis
  • Highly dispersed noble metals are crucial for enhancing catalyst efficiency in the oxidation of formaldehyde (HCHO).
  • The introduction of potassium (K) to palladium (Pd) supported on silicon oxide (SiO) significantly improved the catalyst's performance, achieving a 93% conversion rate of HCHO.
  • The study revealed that K doping stabilized Pd on the carrier, increased Pd dispersion, and enhanced the formation of oxygen vacancies, leading to more reactive oxygen species that boost oxidation efficiency.
View Article and Find Full Text PDF

Adsorption Structure-Activity Correlation in the Photocatalytic Chemistry of Methanol and Water on TiO(110).

Acc Chem Res

December 2024

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China.

Article Synopsis
  • Photocatalysis involves light absorption and charge transfer processes that have potential applications in converting solar energy to fuel, such as in water oxidation, but the detailed mechanisms remain unclear due to the complexity of catalysts in aqueous environments.
  • The lack of direct experimental evidence leads to misunderstandings about active sites and charge transfer dynamics, as seen in debates regarding the role of Ti sites on TiO surfaces in oxidative reactions.
  • This study employs advanced surface science techniques and theoretical calculations to provide insights into the photocatalytic reactions of methanol and water on TiO, aiming to clarify the molecular-level mechanisms involved.
View Article and Find Full Text PDF

Formaldehyde (FA) long term exposure leads to abnormal pulmonary function and small airway obstruction of the patients. Hydrogen sulfide (HS) is one of the recognized gaseous transmitters involved in a wide range of cellular functions. It is unknown the involvement of HS in FA-induced lung injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!