Gaseous formaldehyde is sampled by derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) adsorbed onto poly (dimethylsiloxane)/divinylbenzene solid-phase microextraction fibers. The product of the reaction is an oxime which is thermally very stable and insensitive to light. The oxime can be analyzed by gas chromatography with flame ionization detection and other detectors. Loading PFBHA on the fiber is by room-temperature headspace extraction from aqueous solutions of PFBHA. The process of loading and desorption of unreacted PFBHA, and oxime formed, is both highly reproducible and reversible, with more than 200 loading, sampling, and analysis steps possible with one fiber. The standard formaldehyde gas concentrations studied ranged from 15 to 3200 ppbv with sampling times from 10 s to 12 min. Quantification can be achieved via interpolation from calibration curves of area counts as a function of formaldehyde concentration for a fixed sampling time. Sampling for 10 s yields a method detection limit of 40 ppbv and at 300 s the method detection limit is 4.6 ppbv. This is equal to or better than all other conventional grab sampling methods for gaseous formaldehyde employing sampling trains or passive sampling techniques. Alternatively, gaseous formaldehyde can be quantified with an empirically established apparent first-order rate constant (0.0030 ng/(ppbv s) at 25 °C) for the reaction between sorbed PFBHA and gaseous formaldehyde. This first-order rate constant allows for quantitative analyses without a calibration curve, only requiring detector calibration with the oxime. This new method was used for the headspace sampling of air known to contain formaldehyde, as well as other carbonyl compounds, and from various matrixes such as cosmetics and building products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac9711394 | DOI Listing |
Chemosphere
January 2025
Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China. Electronic address:
Photocatalytic oxidation is considered to be a highly promising technology for indoor formaldehyde (HCHO) abatement. However, powdered photocatalysts encounter practical challenges due to their recycling difficulties and propensity for aggregation. In this study, we developed a CuO/OVs-TiO photocatalyst dispersion using various physical and chemical methods, which could be stabilized for an extended period.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
We propose a hybrid electrocatalytic-bioelectrocatalytic reaction cascade integrated on a gas diffusion electrode for CO reduction under selective formation of methanol. Ag-BiO selectively reduces gaseous CO to formate at neutral pH conditions. A subsequent enzymatic cascade comprising formaldehyde dehydrogenase and alcohol dehydrogenase, which are both nicotinamide adenine dinucleotide (NAD)-dependent, further reduce formate sequentially to formaldehyde and methanol.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, China; Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Acc Chem Res
December 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 Liaoning, P. R. China.
Curr Res Toxicol
October 2024
Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
Formaldehyde (FA) long term exposure leads to abnormal pulmonary function and small airway obstruction of the patients. Hydrogen sulfide (HS) is one of the recognized gaseous transmitters involved in a wide range of cellular functions. It is unknown the involvement of HS in FA-induced lung injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!