A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.17 μM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm200227r | DOI Listing |
ACS Infect Dis
August 2022
Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, Salvador, 40296-710Bahia, Brazil.
Pyrido[1,2-]benzimidazoles (PBIs) are synthetic antiplasmodium agents with potent activity and are structurally differentiated from benchmark antimalarials. To study the cellular uptake of PBIs and understand the underlying phenotype of their antiplasmodium activity, their antiparasitic activities were examined in chloroquine (CQ)-susceptible and CQ-resistant . Moreover, drug uptake and heme detoxification suppression were examined in -infected mice.
View Article and Find Full Text PDFOrg Biomol Chem
November 2020
Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
The intrinsic fluorescence properties of two related pyrido[1,2-a]benzimidazole antimalarial compounds suitable for the cellular imaging of the human malaria parasite Plasmodium falciparum without the need to attach extrinsic fluorophores are described. Although these compounds are structurally related, they have been shown by confocal microscopy to not only accumulate selectively within P. falciparum but to also accumulate differently in the organelles investigated.
View Article and Find Full Text PDFACS Infect Dis
March 2019
Department of Chemistry , University of Cape Town, Rondebosch 7701 , South Africa.
A novel series of pyrido[1,2- a]benzimidazoles bearing Mannich base side chains and their metabolites were synthesized and evaluated for in vitro antiplasmodium activity, microsomal metabolic stability, reactive metabolite (RM) formation, and in vivo antimalarial efficacy in a mouse model. Oral administration of one of the derivatives at 4 × 50 mg/kg reduced parasitemia by 95% in Plasmodium berghei-infected mice, with a mean survival period of 16 days post-treatment. The in vivo efficacy of these derivatives is likely a consequence of their active metabolites, two of which showed potent in vitro antiplasmodium activity against chloroquine-sensitive and multidrug-resistant Plasmodium falciparum ( P.
View Article and Find Full Text PDFJ Med Chem
January 2019
Department of Chemistry , University of Cape Town, Rondebosch 7701 , South Africa.
Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection.
View Article and Find Full Text PDFAcc Chem Res
July 2017
Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!