A novel class of antimalarial pyrido[1,2-a]benzimidazoles were synthesized and evaluated for antiplasmodial activity and cytotoxicity following hits identified from screening commercially available compound collections. The most active of these, TDR86919 (4c), showed improved in vitro activity vs the drug-resistant K1 strain of Plasmodium falciparum relative to chloroquine (IC(50) = 0.047 μM v 0.17 μM); potency was retained against a range of drug-sensitive and drug-resistant strains, with negligible cytotoxicity against the mammalian (L-6) cell line (selectivity index of >600). 4c and several close analogues (as HCl or mesylate salts) showed significant efficacy in P. berghei infected mice following both intraperitoneal (ip) and oral (po) administration, with >90% inhibition of parasitemia, accompanied by an increase in the mean survival time (MSD). The pyrido[1,2-a]benzimidazoles appeared to be relatively slow acting in vivo compared to chloroquine, and metabolic stability of the alkylamino side chain was identified as a key issue in influencing in vivo activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm200227rDOI Listing

Publication Analysis

Top Keywords

antimalarial pyrido[12-a]benzimidazoles
8
pyrido[12-a]benzimidazoles novel
4
novel class
4
class antimalarial
4
pyrido[12-a]benzimidazoles synthesized
4
synthesized evaluated
4
evaluated antiplasmodial
4
antiplasmodial activity
4
activity cytotoxicity
4
cytotoxicity hits
4

Similar Publications

Pyrido[1,2-]benzimidazoles (PBIs) are synthetic antiplasmodium agents with potent activity and are structurally differentiated from benchmark antimalarials. To study the cellular uptake of PBIs and understand the underlying phenotype of their antiplasmodium activity, their antiparasitic activities were examined in chloroquine (CQ)-susceptible and CQ-resistant . Moreover, drug uptake and heme detoxification suppression were examined in -infected mice.

View Article and Find Full Text PDF

Intrinsic fluorescence properties of antimalarial pyrido[1,2-]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite .

Org Biomol Chem

November 2020

Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.

The intrinsic fluorescence properties of two related pyrido[1,2-a]benzimidazole antimalarial compounds suitable for the cellular imaging of the human malaria parasite Plasmodium falciparum without the need to attach extrinsic fluorophores are described. Although these compounds are structurally related, they have been shown by confocal microscopy to not only accumulate selectively within P. falciparum but to also accumulate differently in the organelles investigated.

View Article and Find Full Text PDF

A novel series of pyrido[1,2- a]benzimidazoles bearing Mannich base side chains and their metabolites were synthesized and evaluated for in vitro antiplasmodium activity, microsomal metabolic stability, reactive metabolite (RM) formation, and in vivo antimalarial efficacy in a mouse model. Oral administration of one of the derivatives at 4 × 50 mg/kg reduced parasitemia by 95% in Plasmodium berghei-infected mice, with a mean survival period of 16 days post-treatment. The in vivo efficacy of these derivatives is likely a consequence of their active metabolites, two of which showed potent in vitro antiplasmodium activity against chloroquine-sensitive and multidrug-resistant Plasmodium falciparum ( P.

View Article and Find Full Text PDF

Structure-activity relationship studies involving N-aryl-3-trifluoromethyl pyrido[1,2- a]benzimidazoles (PBI) identified several compounds possessing potent in vitro activities against the asexual blood, liver, and gametocyte stages of the Plasmodium parasite with no cross-resistance to chloroquine. Frontrunner lead compounds with good in vitro absorption, distribution, metabolism, and excretion (ADME) profiles were subjected to in vivo proof-of-concept studies in NMRI mice harboring the rodent P. berghei infection.

View Article and Find Full Text PDF

New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!