We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.5 nm were generated, and a method has been developed to achieve highly uniform distributions of these catalysts onto the Vulcan XC-72 carbon support. As-prepared wires are activated by the use of two distinctive treatment protocols followed by selective CO adsorption in order to selectively remove undesirable organic residues. Subsequently, the desired nanowire core-Pt monolayer shell motif was reliably achieved by Cu underpotential deposition followed by galvanic displacement of the Cu adatoms. The surface area and mass activity of the acid and ozone-treated nanowires were assessed, and the ozone-treated nanowires were found to maintain outstanding area and mass specific activities of 0.77 mA/cm(2) and 1.83 A/mg(Pt), respectively, which were significantly enhanced as compared with conventional commercial Pt nanoparticles, core-shell nanoparticles, and acid-treated nanowires. The ozone-treated nanowires also maintained excellent electrochemical durability under accelerated half-cell testing, and it was found that the area-specific activity increased by ~1.5 fold after a simulated catalyst lifetime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja111130t | DOI Listing |
Nanotechnology
August 2016
Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, and Institute of The Materials Science and Technology Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China.
Unlabelled: In this work, an efficient flexible polymer solar cell was achieved by controlling the UV-ozone treatment time of silver nanowires (Ag NWs) used in the electrode and combined with other modification materials. Through optimizing the time of UV-ozone treatment, it is shown that Ag NWs electrode treated by UV-ozone for 10 s improves the power conversion efficiency (PCE) of the device based on the blend of poly(3-hexylthiophene)(P3HT): [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) from 0.76% to 1.
View Article and Find Full Text PDFNanoscale
January 2012
Institut de Recherche Interdisciplinaire (IRI-CNRS-3078), Université Lille1, Parc scientifique de la haute borne, 50 Avenue de Halley, 59658, Villeneuve d'Ascq, France.
This paper reports on the use of boron-doped diamond nanowires (BDD NWs) as an inorganic substrate for matrix-free laser desorption/ionization mass spectrometry (LDI-MS) analysis of small molecules. The diamond nanowires are prepared by reactive ion etching (RIE) with oxygen plasma of highly boron-doped (the boron level is 10(19) B cm(-3)) or undoped nanocrystalline diamond substrates. The resulting diamond nanowires are coated with a thin silicon oxide layer that confers a superhydrophilic character to the surface.
View Article and Find Full Text PDFJ Am Chem Soc
June 2011
Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA.
We report on the synthesis, characterization, and electrochemical performance of novel, ultrathin Pt monolayer shell-Pd nanowire core catalysts. Initially, ultrathin Pd nanowires with diameters of 2.0 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!