AI Article Synopsis

Article Abstract

The island syndrome predicts directional changes in the morphology and demography of insular vertebrates, due to changes in trophic complexity and migration rates caused by island size and isolation. However, the high rate of human-mediated species introductions to some islands also increases trophic complexity, and this will reduce the perceived insularity on any such island. We test four hypotheses on the role of increased trophic complexity on the island syndrome, using introduced black rats (Rattus rattus) on two isolated coral atolls in the Mozambique Channel. Europa Island has remained relatively pristine and insular, with few species introductions, whereas Juan de Nova Island has had many species introductions, including predators and competitors of rats, anthropogenically increasing its trophic complexity. In the most insular environments, the island syndrome is expected to generate increases in body size and densities of rodents but decreases in the rates of reproduction and population cycling. Morphology and reproduction were compared using linear regression and canonical discriminant analysis, while density and population cycling were compared using spatially explicit capture-recapture analysis. Results were compared to other insular black rat populations in the Mozambique Channel and were consistent with predictions from the island syndrome. The manifestation of an island syndrome in rodents depends upon the trophic composition of a community, and may not relate to island size alone when many species additions, such as invasions, have occurred. The differing patterns of rodent population dynamics on each island provide information for future rodent eradication operations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-011-2031-zDOI Listing

Publication Analysis

Top Keywords

island syndrome
24
trophic complexity
16
island
12
species introductions
12
population dynamics
8
island size
8
mozambique channel
8
population cycling
8
syndrome
5
trophic
5

Similar Publications

The accessory navicular (AN) is an accessory bone located on the posteromedial aspect of the navicular tuberosity that can cause pain following overuse or trauma, particularly during childhood. However, the detailed epidemiological characteristics of AN in children have not been well studied. This study aimed to clarify the prevalence of AN and painful AN among Japanese children by examining the characteristics according to sex and age.

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Clinical Characteristics of Snakebite Envenomings in Taiwan.

Toxins (Basel)

December 2024

Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402202, Taiwan.

Snakebite envenomings continue to represent a major public health concern in Taiwan because of the presence of various venomous snakes whose habitats intersect with human activities. This review provides a comprehensive analysis of the clinical characteristics, complications, and management strategies associated with snakebite envenomings in Taiwan. Taiwan is inhabited by six principal venomous snakes: , , , , , and , each presenting distinct clinical challenges.

View Article and Find Full Text PDF

Background: Ukrainian refugees fleeing the conflict between Russia and Ukraine may face significant challenges to their physical, psycho-emotional, social, and spiritual wellbeing.

Aim: To identify the health needs of Ukrainian refugees seen in primary care facilities in Tenerife, Canary Islands, Spain.

Methods: A mixed-methods design was employed.

View Article and Find Full Text PDF

Background: We developed a United States-based real-world data resource to better understand the continued impact of the coronavirus disease 2019 (COVID-19) pandemic on immunocompromised patients, who are typically underrepresented in prospective studies and clinical trials.

Methods: The COVID-19 Real World Data infrastructure (CRWDi) was created by linking and harmonizing de-identified HealthVerity medical and pharmacy claims data from 1 December 2018 to 31 December 2023, with severe acute respiratory syndrome coronavirus 2 virologic and serologic laboratory data from major commercial laboratories and Northwell Health; COVID-19 vaccination data; and, for patients with cancer, 2010 to 2021 National Cancer Institute Surveillance, Epidemiology, and End Results registry data.

Results: The CRWDi contains 4 cohorts: patients with cancer; patients with rheumatic diseases receiving pharmacotherapy; noncancer solid organ and hematopoietic stem cell transplant recipients; and people from the general population including adults and pediatric patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!