Prediction of problematic wine fermentations using artificial neural networks.

Bioprocess Biosyst Eng

Escuela de Ingeniería Industrial, Universidad de Valparaíso, Av. Brasil 1762, Valparaiso, Chile.

Published: November 2011

Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-011-0557-4DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural networks
8
predictor variables
8
input data
8
fermentations
5
prediction problematic
4
problematic wine
4
wine fermentations
4
fermentations artificial
4
networks artificial
4

Similar Publications

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

Recurrent neural networks (RNNs) have emerged as a prominent tool for modeling cortical function, and yet their conventional architecture is lacking in physiological and anatomical fidelity. In particular, these models often fail to incorporate two crucial biological constraints: i) Dale's law, i.e.

View Article and Find Full Text PDF

Introduction: Artificial intelligence and neuroimaging enable accurate dementia prediction, but 'black box' models can be difficult to trust. Explainable artificial intelligence (XAI) describes techniques to understand model behaviour and the influence of features, however deciding which method is most appropriate is non-trivial. Vision transformers (ViT) have also gained popularity, providing a self-explainable, alternative to traditional convolutional neural networks (CNN).

View Article and Find Full Text PDF

Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!