A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards a systemic metabolic signature of the arbuscular mycorrhizal interaction. | LitMetric

Our experiments addressed systemic metabolic effects in above-ground plant tissue as part of the plant's response to the arbuscular mycorrhizal (AM) interaction. Due to the physiology of this interaction, we expected effects in the areas of plant mineral nutrition, carbon allocation and stress-related metabolism, but also a notable dependence of respective metabolic changes on environmental conditions and on plant developmental programs. To assess these issues, we analyzed metabolite profiles from mycorrhizal and non-mycorrhizal Lotus japonicus grown under greenhouse conditions at three different time points in the growing season in three different above-ground organs (flowers, sink leaves and source leaves). Statistical analysis of our data revealed a number of significant changes in individual experiments with little overlap between these experiments, indicating the expected impact of external conditions on the plant's response to AM colonization. Partial least square-discriminant analysis (PLS-DA) nevertheless revealed considerable similarities between the datasets, and loading analysis of the component separating mycorrhizal and non-mycorrhizal plants allowed the defining of a core set of metabolites responsible for this separation. This core set was observed in experiments with and without mycorrhiza-induced growth effects. It corroborated trends already indicated by the significant changes from individual experiments and suggested a negative systemic impact of AM colonization on central catabolic metabolism as well as on amino acid metabolism. In addition, metabolic signals for an increase in stress experienced by plant tissue were recorded in flowers and source leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-011-2037-6DOI Listing

Publication Analysis

Top Keywords

systemic metabolic
8
arbuscular mycorrhizal
8
mycorrhizal interaction
8
plant tissue
8
plant's response
8
mycorrhizal non-mycorrhizal
8
source leaves
8
changes individual
8
individual experiments
8
core set
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!