Although phototrophic microbial communities are important components of soils in arid and semi-arid ecosystems around the world, the knowledge of their taxonomic composition and dependency on soil chemistry and vegetation is still fragmentary. We studied the abundance and the diversity of cyanobacteria and eukaryotic microalgae along altitudinal gradients (3,700-5,970 m) at four sites in the dry mountains of Ladakh (Little Tibet, Zanskar Mountains, and Eastern Karakoram), using epifluorescence. The effects of environmental factors (altitude, mountain range, and vegetation type) on soil physico-chemical parameters (pH; texture; organic matter, nitrogen, ammonia, and phosphorus contents; and concentration of chlorophylls and carotenoids) and on the composition and biovolume of phototrophs were tested by multivariate redundancy analysis and variance partitioning. Phototrophs were identified in all collected samples, and phototroph biovolume ranged from 0.08 to 0.32 mm(3) g(-1) dry weight. The dominant component was cyanobacteria, which represented 70.9% to 98.6% of the biovolume. Cyanobacterial species richness was low in that only 28 morphotypes were detected. The biovolume of Oscillatoriales consisted mainly of Phormidium spp. and Microcoleus vaginatus. The environmental factors accounted for 43.8% of the total variability in microbial and soil data, 20.6% of which was explained solely by mountain range, 7.0% by altitude, and 8.4% by vegetation type. Oscillatoriales prevailed in alpine meadows (which had relatively high organic matter and fine soil texture), while Nostocales dominated in the subnival zone and screes. Eukaryotic microalgae together with cyanobacteria in the order Chroococcales were mostly present in the subnival zone. We conclude that the high elevation, semiarid, and arid soils in Ladakh are suitable habitats for microbial phototrophic communities and that the differences in these communities are associated with site, altitude, and vegetation type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-011-9878-8 | DOI Listing |
Plants (Basel)
January 2025
Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Feira de Santana 44036-900, Bahia, Brazil.
series was created by Barneby in 1991, embracing species diagnosed by their small subshrubby habit and the presence of gland-tipped setae and trimerous flowers. Most species are endemic to Northeastern Brazil, and some possess characters deemed diagnostic which nonetheless overlap, making species identification difficult. Our study aimed to test species circumscriptions and sets of characters that could be applied to unequivocally distinguish the species.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
Maintaining the stability of ecosystems is critical for supporting essential ecosystem services over time. However, our understanding of the contribution of the diverse biotic and abiotic factors to this stability in wetlands remains limited. Here, we combined data from a field vegetation survey of 725 herbaceous wetland sites in China with remote sensing information from the Enhanced Vegetation Index (EVI) from 2010 to 2020 to explore the contribution of biotic and abiotic factors to the temporal stability of primary productivity.
View Article and Find Full Text PDFConserv Biol
January 2025
School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia.
Terrestrial protected areas are essential for biodiversity conservation, yet it is not fully understood when and how different types of protected areas are most effective in achieving specific conservation objectives. We assessed the impact of reserves on tree cover loss and gain through a case study in Tasmania, Australia. We considered varying protection levels (strict, where human activities are restricted, and multiple use) and governance types (public and private).
View Article and Find Full Text PDFJ Am Heart Assoc
January 2025
Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine Mayo Clinic College of Medicine and Science Rochester MN USA.
Background: Echocardiographic evaluation of vegetations is crucial in infective endocarditis (IE). Although several studies have noted a link between larger vegetations and an increased risk of embolization, a more comprehensive evaluation of vegetation characteristics in a contemporary cohort has not been conducted. Our study aimed to define the short-term risk of symptomatic embolization in patients with IE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!